224 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| /**
 | |
|  * PHPExcel
 | |
|  *
 | |
|  * Copyright (c) 2006 - 2014 PHPExcel
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  * @category   PHPExcel
 | |
|  * @package    PHPExcel_Shared_Trend
 | |
|  * @copyright  Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
 | |
|  * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt	LGPL
 | |
|  * @version    ##VERSION##, ##DATE##
 | |
|  */
 | |
| 
 | |
| 
 | |
| require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
 | |
| require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php';
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * PHPExcel_Polynomial_Best_Fit
 | |
|  *
 | |
|  * @category   PHPExcel
 | |
|  * @package    PHPExcel_Shared_Trend
 | |
|  * @copyright  Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
 | |
|  */
 | |
| class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit
 | |
| {
 | |
| 	/**
 | |
| 	 * Algorithm type to use for best-fit
 | |
| 	 * (Name of this trend class)
 | |
| 	 *
 | |
| 	 * @var	string
 | |
| 	 **/
 | |
| 	protected $_bestFitType		= 'polynomial';
 | |
| 
 | |
| 	/**
 | |
| 	 * Polynomial order
 | |
| 	 *
 | |
| 	 * @protected
 | |
| 	 * @var	int
 | |
| 	 **/
 | |
| 	protected $_order			= 0;
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Return the order of this polynomial
 | |
| 	 *
 | |
| 	 * @return	 int
 | |
| 	 **/
 | |
| 	public function getOrder() {
 | |
| 		return $this->_order;
 | |
| 	}	//	function getOrder()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Return the Y-Value for a specified value of X
 | |
| 	 *
 | |
| 	 * @param	 float		$xValue			X-Value
 | |
| 	 * @return	 float						Y-Value
 | |
| 	 **/
 | |
| 	public function getValueOfYForX($xValue) {
 | |
| 		$retVal = $this->getIntersect();
 | |
| 		$slope = $this->getSlope();
 | |
| 		foreach($slope as $key => $value) {
 | |
| 			if ($value != 0.0) {
 | |
| 				$retVal += $value * pow($xValue, $key + 1);
 | |
| 			}
 | |
| 		}
 | |
| 		return $retVal;
 | |
| 	}	//	function getValueOfYForX()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Return the X-Value for a specified value of Y
 | |
| 	 *
 | |
| 	 * @param	 float		$yValue			Y-Value
 | |
| 	 * @return	 float						X-Value
 | |
| 	 **/
 | |
| 	public function getValueOfXForY($yValue) {
 | |
| 		return ($yValue - $this->getIntersect()) / $this->getSlope();
 | |
| 	}	//	function getValueOfXForY()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Return the Equation of the best-fit line
 | |
| 	 *
 | |
| 	 * @param	 int		$dp		Number of places of decimal precision to display
 | |
| 	 * @return	 string
 | |
| 	 **/
 | |
| 	public function getEquation($dp=0) {
 | |
| 		$slope = $this->getSlope($dp);
 | |
| 		$intersect = $this->getIntersect($dp);
 | |
| 
 | |
| 		$equation = 'Y = '.$intersect;
 | |
| 		foreach($slope as $key => $value) {
 | |
| 			if ($value != 0.0) {
 | |
| 				$equation .= ' + '.$value.' * X';
 | |
| 				if ($key > 0) {
 | |
| 					$equation .= '^'.($key + 1);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return $equation;
 | |
| 	}	//	function getEquation()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Return the Slope of the line
 | |
| 	 *
 | |
| 	 * @param	 int		$dp		Number of places of decimal precision to display
 | |
| 	 * @return	 string
 | |
| 	 **/
 | |
| 	public function getSlope($dp=0) {
 | |
| 		if ($dp != 0) {
 | |
| 			$coefficients = array();
 | |
| 			foreach($this->_slope as $coefficient) {
 | |
| 				$coefficients[] = round($coefficient,$dp);
 | |
| 			}
 | |
| 			return $coefficients;
 | |
| 		}
 | |
| 		return $this->_slope;
 | |
| 	}	//	function getSlope()
 | |
| 
 | |
| 
 | |
| 	public function getCoefficients($dp=0) {
 | |
| 		return array_merge(array($this->getIntersect($dp)),$this->getSlope($dp));
 | |
| 	}	//	function getCoefficients()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Execute the regression and calculate the goodness of fit for a set of X and Y data values
 | |
| 	 *
 | |
| 	 * @param	int			$order		Order of Polynomial for this regression
 | |
| 	 * @param	float[]		$yValues	The set of Y-values for this regression
 | |
| 	 * @param	float[]		$xValues	The set of X-values for this regression
 | |
| 	 * @param	boolean		$const
 | |
| 	 */
 | |
| 	private function _polynomial_regression($order, $yValues, $xValues, $const) {
 | |
| 		// calculate sums
 | |
| 		$x_sum = array_sum($xValues);
 | |
| 		$y_sum = array_sum($yValues);
 | |
| 		$xx_sum = $xy_sum = 0;
 | |
| 		for($i = 0; $i < $this->_valueCount; ++$i) {
 | |
| 			$xy_sum += $xValues[$i] * $yValues[$i];
 | |
| 			$xx_sum += $xValues[$i] * $xValues[$i];
 | |
| 			$yy_sum += $yValues[$i] * $yValues[$i];
 | |
| 		}
 | |
| 		/*
 | |
| 		 *	This routine uses logic from the PHP port of polyfit version 0.1
 | |
| 		 *	written by Michael Bommarito and Paul Meagher
 | |
| 		 *
 | |
| 		 *	The function fits a polynomial function of order $order through
 | |
| 		 *	a series of x-y data points using least squares.
 | |
| 		 *
 | |
| 		 */
 | |
| 		for ($i = 0; $i < $this->_valueCount; ++$i) {
 | |
| 			for ($j = 0; $j <= $order; ++$j) {
 | |
| 				$A[$i][$j] = pow($xValues[$i], $j);
 | |
| 			}
 | |
| 		}
 | |
| 		for ($i=0; $i < $this->_valueCount; ++$i) {
 | |
| 			$B[$i] = array($yValues[$i]);
 | |
| 		}
 | |
| 		$matrixA = new Matrix($A);
 | |
| 		$matrixB = new Matrix($B);
 | |
| 		$C = $matrixA->solve($matrixB);
 | |
| 
 | |
| 		$coefficients = array();
 | |
| 		for($i = 0; $i < $C->m; ++$i) {
 | |
| 			$r = $C->get($i, 0);
 | |
| 			if (abs($r) <= pow(10, -9)) {
 | |
| 				$r = 0;
 | |
| 			}
 | |
| 			$coefficients[] = $r;
 | |
| 		}
 | |
| 
 | |
| 		$this->_intersect = array_shift($coefficients);
 | |
| 		$this->_slope = $coefficients;
 | |
| 
 | |
| 		$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum);
 | |
| 		foreach($this->_xValues as $xKey => $xValue) {
 | |
| 			$this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
 | |
| 		}
 | |
| 	}	//	function _polynomial_regression()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Define the regression and calculate the goodness of fit for a set of X and Y data values
 | |
| 	 *
 | |
| 	 * @param	int			$order		Order of Polynomial for this regression
 | |
| 	 * @param	float[]		$yValues	The set of Y-values for this regression
 | |
| 	 * @param	float[]		$xValues	The set of X-values for this regression
 | |
| 	 * @param	boolean		$const
 | |
| 	 */
 | |
| 	function __construct($order, $yValues, $xValues=array(), $const=True) {
 | |
| 		if (parent::__construct($yValues, $xValues) !== False) {
 | |
| 			if ($order < $this->_valueCount) {
 | |
| 				$this->_bestFitType .= '_'.$order;
 | |
| 				$this->_order = $order;
 | |
| 				$this->_polynomial_regression($order, $yValues, $xValues, $const);
 | |
| 				if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
 | |
| 					$this->_error = True;
 | |
| 				}
 | |
| 			} else {
 | |
| 				$this->_error = True;
 | |
| 			}
 | |
| 		}
 | |
| 	}	//	function __construct()
 | |
| 
 | |
| }	//	class polynomialBestFit
 | 
