 509f27e5c6
			
		
	
	
		509f27e5c6
		
	
	
	
	
		
			
			git-svn-id: https://phpexcel.svn.codeplex.com/svn/trunk@59884 2327b42d-5241-43d6-9e2a-de5ac946f064
		
			
				
	
	
		
			527 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			527 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| /**
 | |
|  *	@package JAMA
 | |
|  *
 | |
|  *	For an m-by-n matrix A with m >= n, the singular value decomposition is
 | |
|  *	an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 | |
|  *	an n-by-n orthogonal matrix V so that A = U*S*V'.
 | |
|  *
 | |
|  *	The singular values, sigma[$k] = S[$k][$k], are ordered so that
 | |
|  *	sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 | |
|  *
 | |
|  *	The singular value decompostion always exists, so the constructor will
 | |
|  *	never fail.  The matrix condition number and the effective numerical
 | |
|  *	rank can be computed from this decomposition.
 | |
|  *
 | |
|  *	@author  Paul Meagher
 | |
|  *	@license PHP v3.0
 | |
|  *	@version 1.1
 | |
|  */
 | |
| class SingularValueDecomposition  {
 | |
| 
 | |
| 	/**
 | |
| 	 *	Internal storage of U.
 | |
| 	 *	@var array
 | |
| 	 */
 | |
| 	private $U = array();
 | |
| 
 | |
| 	/**
 | |
| 	 *	Internal storage of V.
 | |
| 	 *	@var array
 | |
| 	 */
 | |
| 	private $V = array();
 | |
| 
 | |
| 	/**
 | |
| 	 *	Internal storage of singular values.
 | |
| 	 *	@var array
 | |
| 	 */
 | |
| 	private $s = array();
 | |
| 
 | |
| 	/**
 | |
| 	 *	Row dimension.
 | |
| 	 *	@var int
 | |
| 	 */
 | |
| 	private $m;
 | |
| 
 | |
| 	/**
 | |
| 	 *	Column dimension.
 | |
| 	 *	@var int
 | |
| 	 */
 | |
| 	private $n;
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Construct the singular value decomposition
 | |
| 	 *
 | |
| 	 *	Derived from LINPACK code.
 | |
| 	 *
 | |
| 	 *	@param $A Rectangular matrix
 | |
| 	 *	@return Structure to access U, S and V.
 | |
| 	 */
 | |
| 	public function __construct($Arg) {
 | |
| 
 | |
| 		// Initialize.
 | |
| 		$A = $Arg->getArrayCopy();
 | |
| 		$this->m = $Arg->getRowDimension();
 | |
| 		$this->n = $Arg->getColumnDimension();
 | |
| 		$nu      = min($this->m, $this->n);
 | |
| 		$e       = array();
 | |
| 		$work    = array();
 | |
| 		$wantu   = true;
 | |
| 		$wantv   = true;
 | |
| 		$nct = min($this->m - 1, $this->n);
 | |
| 		$nrt = max(0, min($this->n - 2, $this->m));
 | |
| 
 | |
| 		// Reduce A to bidiagonal form, storing the diagonal elements
 | |
| 		// in s and the super-diagonal elements in e.
 | |
| 		for ($k = 0; $k < max($nct,$nrt); ++$k) {
 | |
| 
 | |
| 			if ($k < $nct) {
 | |
| 				// Compute the transformation for the k-th column and
 | |
| 				// place the k-th diagonal in s[$k].
 | |
| 				// Compute 2-norm of k-th column without under/overflow.
 | |
| 				$this->s[$k] = 0;
 | |
| 				for ($i = $k; $i < $this->m; ++$i) {
 | |
| 					$this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
 | |
| 				}
 | |
| 				if ($this->s[$k] != 0.0) {
 | |
| 					if ($A[$k][$k] < 0.0) {
 | |
| 						$this->s[$k] = -$this->s[$k];
 | |
| 					}
 | |
| 					for ($i = $k; $i < $this->m; ++$i) {
 | |
| 						$A[$i][$k] /= $this->s[$k];
 | |
| 					}
 | |
| 					$A[$k][$k] += 1.0;
 | |
| 				}
 | |
| 				$this->s[$k] = -$this->s[$k];
 | |
| 			}
 | |
| 
 | |
| 			for ($j = $k + 1; $j < $this->n; ++$j) {
 | |
| 				if (($k < $nct) & ($this->s[$k] != 0.0)) {
 | |
| 					// Apply the transformation.
 | |
| 					$t = 0;
 | |
| 					for ($i = $k; $i < $this->m; ++$i) {
 | |
| 						$t += $A[$i][$k] * $A[$i][$j];
 | |
| 					}
 | |
| 					$t = -$t / $A[$k][$k];
 | |
| 					for ($i = $k; $i < $this->m; ++$i) {
 | |
| 						$A[$i][$j] += $t * $A[$i][$k];
 | |
| 					}
 | |
| 					// Place the k-th row of A into e for the
 | |
| 					// subsequent calculation of the row transformation.
 | |
| 					$e[$j] = $A[$k][$j];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if ($wantu AND ($k < $nct)) {
 | |
| 				// Place the transformation in U for subsequent back
 | |
| 				// multiplication.
 | |
| 				for ($i = $k; $i < $this->m; ++$i) {
 | |
| 					$this->U[$i][$k] = $A[$i][$k];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if ($k < $nrt) {
 | |
| 				// Compute the k-th row transformation and place the
 | |
| 				// k-th super-diagonal in e[$k].
 | |
| 				// Compute 2-norm without under/overflow.
 | |
| 				$e[$k] = 0;
 | |
| 				for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
| 					$e[$k] = hypo($e[$k], $e[$i]);
 | |
| 				}
 | |
| 				if ($e[$k] != 0.0) {
 | |
| 					if ($e[$k+1] < 0.0) {
 | |
| 						$e[$k] = -$e[$k];
 | |
| 					}
 | |
| 					for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
| 						$e[$i] /= $e[$k];
 | |
| 					}
 | |
| 					$e[$k+1] += 1.0;
 | |
| 				}
 | |
| 				$e[$k] = -$e[$k];
 | |
| 				if (($k+1 < $this->m) AND ($e[$k] != 0.0)) {
 | |
| 					// Apply the transformation.
 | |
| 					for ($i = $k+1; $i < $this->m; ++$i) {
 | |
| 						$work[$i] = 0.0;
 | |
| 					}
 | |
| 					for ($j = $k+1; $j < $this->n; ++$j) {
 | |
| 						for ($i = $k+1; $i < $this->m; ++$i) {
 | |
| 							$work[$i] += $e[$j] * $A[$i][$j];
 | |
| 						}
 | |
| 					}
 | |
| 					for ($j = $k + 1; $j < $this->n; ++$j) {
 | |
| 						$t = -$e[$j] / $e[$k+1];
 | |
| 						for ($i = $k + 1; $i < $this->m; ++$i) {
 | |
| 							$A[$i][$j] += $t * $work[$i];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				if ($wantv) {
 | |
| 					// Place the transformation in V for subsequent
 | |
| 					// back multiplication.
 | |
| 					for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
| 						$this->V[$i][$k] = $e[$i];
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Set up the final bidiagonal matrix or order p.
 | |
| 		$p = min($this->n, $this->m + 1);
 | |
| 		if ($nct < $this->n) {
 | |
| 			$this->s[$nct] = $A[$nct][$nct];
 | |
| 		}
 | |
| 		if ($this->m < $p) {
 | |
| 			$this->s[$p-1] = 0.0;
 | |
| 		}
 | |
| 		if ($nrt + 1 < $p) {
 | |
| 			$e[$nrt] = $A[$nrt][$p-1];
 | |
| 		}
 | |
| 		$e[$p-1] = 0.0;
 | |
| 		// If required, generate U.
 | |
| 		if ($wantu) {
 | |
| 			for ($j = $nct; $j < $nu; ++$j) {
 | |
| 				for ($i = 0; $i < $this->m; ++$i) {
 | |
| 					$this->U[$i][$j] = 0.0;
 | |
| 				}
 | |
| 				$this->U[$j][$j] = 1.0;
 | |
| 			}
 | |
| 			for ($k = $nct - 1; $k >= 0; --$k) {
 | |
| 				if ($this->s[$k] != 0.0) {
 | |
| 					for ($j = $k + 1; $j < $nu; ++$j) {
 | |
| 						$t = 0;
 | |
| 						for ($i = $k; $i < $this->m; ++$i) {
 | |
| 							$t += $this->U[$i][$k] * $this->U[$i][$j];
 | |
| 						}
 | |
| 						$t = -$t / $this->U[$k][$k];
 | |
| 						for ($i = $k; $i < $this->m; ++$i) {
 | |
| 							$this->U[$i][$j] += $t * $this->U[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 					for ($i = $k; $i < $this->m; ++$i ) {
 | |
| 						$this->U[$i][$k] = -$this->U[$i][$k];
 | |
| 					}
 | |
| 					$this->U[$k][$k] = 1.0 + $this->U[$k][$k];
 | |
| 					for ($i = 0; $i < $k - 1; ++$i) {
 | |
| 						$this->U[$i][$k] = 0.0;
 | |
| 					}
 | |
| 				} else {
 | |
| 					for ($i = 0; $i < $this->m; ++$i) {
 | |
| 						$this->U[$i][$k] = 0.0;
 | |
| 					}
 | |
| 					$this->U[$k][$k] = 1.0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If required, generate V.
 | |
| 		if ($wantv) {
 | |
| 			for ($k = $this->n - 1; $k >= 0; --$k) {
 | |
| 				if (($k < $nrt) AND ($e[$k] != 0.0)) {
 | |
| 					for ($j = $k + 1; $j < $nu; ++$j) {
 | |
| 						$t = 0;
 | |
| 						for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
| 							$t += $this->V[$i][$k]* $this->V[$i][$j];
 | |
| 						}
 | |
| 						$t = -$t / $this->V[$k+1][$k];
 | |
| 						for ($i = $k + 1; $i < $this->n; ++$i) {
 | |
| 							$this->V[$i][$j] += $t * $this->V[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				for ($i = 0; $i < $this->n; ++$i) {
 | |
| 					$this->V[$i][$k] = 0.0;
 | |
| 				}
 | |
| 				$this->V[$k][$k] = 1.0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Main iteration loop for the singular values.
 | |
| 		$pp   = $p - 1;
 | |
| 		$iter = 0;
 | |
| 		$eps  = pow(2.0, -52.0);
 | |
| 
 | |
| 		while ($p > 0) {
 | |
| 			// Here is where a test for too many iterations would go.
 | |
| 			// This section of the program inspects for negligible
 | |
| 			// elements in the s and e arrays.  On completion the
 | |
| 			// variables kase and k are set as follows:
 | |
| 			// kase = 1  if s(p) and e[k-1] are negligible and k<p
 | |
| 			// kase = 2  if s(k) is negligible and k<p
 | |
| 			// kase = 3  if e[k-1] is negligible, k<p, and
 | |
| 			//           s(k), ..., s(p) are not negligible (qr step).
 | |
| 			// kase = 4  if e(p-1) is negligible (convergence).
 | |
| 			for ($k = $p - 2; $k >= -1; --$k) {
 | |
| 				if ($k == -1) {
 | |
| 					break;
 | |
| 				}
 | |
| 				if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) {
 | |
| 					$e[$k] = 0.0;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if ($k == $p - 2) {
 | |
| 				$kase = 4;
 | |
| 			} else {
 | |
| 				for ($ks = $p - 1; $ks >= $k; --$ks) {
 | |
| 					if ($ks == $k) {
 | |
| 						break;
 | |
| 					}
 | |
| 					$t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.);
 | |
| 					if (abs($this->s[$ks]) <= $eps * $t)  {
 | |
| 						$this->s[$ks] = 0.0;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				if ($ks == $k) {
 | |
| 					$kase = 3;
 | |
| 				} else if ($ks == $p-1) {
 | |
| 					$kase = 1;
 | |
| 				} else {
 | |
| 					$kase = 2;
 | |
| 					$k = $ks;
 | |
| 				}
 | |
| 			}
 | |
| 			++$k;
 | |
| 
 | |
| 			// Perform the task indicated by kase.
 | |
| 			switch ($kase) {
 | |
| 				// Deflate negligible s(p).
 | |
| 				case 1:
 | |
| 						$f = $e[$p-2];
 | |
| 						$e[$p-2] = 0.0;
 | |
| 						for ($j = $p - 2; $j >= $k; --$j) {
 | |
| 							$t  = hypo($this->s[$j],$f);
 | |
| 							$cs = $this->s[$j] / $t;
 | |
| 							$sn = $f / $t;
 | |
| 							$this->s[$j] = $t;
 | |
| 							if ($j != $k) {
 | |
| 								$f = -$sn * $e[$j-1];
 | |
| 								$e[$j-1] = $cs * $e[$j-1];
 | |
| 							}
 | |
| 							if ($wantv) {
 | |
| 								for ($i = 0; $i < $this->n; ++$i) {
 | |
| 									$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1];
 | |
| 									$this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1];
 | |
| 									$this->V[$i][$j] = $t;
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						break;
 | |
| 				// Split at negligible s(k).
 | |
| 				case 2:
 | |
| 						$f = $e[$k-1];
 | |
| 						$e[$k-1] = 0.0;
 | |
| 						for ($j = $k; $j < $p; ++$j) {
 | |
| 							$t = hypo($this->s[$j], $f);
 | |
| 							$cs = $this->s[$j] / $t;
 | |
| 							$sn = $f / $t;
 | |
| 							$this->s[$j] = $t;
 | |
| 							$f = -$sn * $e[$j];
 | |
| 							$e[$j] = $cs * $e[$j];
 | |
| 							if ($wantu) {
 | |
| 								for ($i = 0; $i < $this->m; ++$i) {
 | |
| 									$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1];
 | |
| 									$this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1];
 | |
| 									$this->U[$i][$j] = $t;
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						break;
 | |
| 				// Perform one qr step.
 | |
| 				case 3:
 | |
| 						// Calculate the shift.
 | |
| 						$scale = max(max(max(max(
 | |
| 									abs($this->s[$p-1]),abs($this->s[$p-2])),abs($e[$p-2])),
 | |
| 									abs($this->s[$k])), abs($e[$k]));
 | |
| 						$sp   = $this->s[$p-1] / $scale;
 | |
| 						$spm1 = $this->s[$p-2] / $scale;
 | |
| 						$epm1 = $e[$p-2] / $scale;
 | |
| 						$sk   = $this->s[$k] / $scale;
 | |
| 						$ek   = $e[$k] / $scale;
 | |
| 						$b    = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
 | |
| 						$c    = ($sp * $epm1) * ($sp * $epm1);
 | |
| 						$shift = 0.0;
 | |
| 						if (($b != 0.0) || ($c != 0.0)) {
 | |
| 							$shift = sqrt($b * $b + $c);
 | |
| 							if ($b < 0.0) {
 | |
| 								$shift = -$shift;
 | |
| 							}
 | |
| 							$shift = $c / ($b + $shift);
 | |
| 						}
 | |
| 						$f = ($sk + $sp) * ($sk - $sp) + $shift;
 | |
| 						$g = $sk * $ek;
 | |
| 						// Chase zeros.
 | |
| 						for ($j = $k; $j < $p-1; ++$j) {
 | |
| 							$t  = hypo($f,$g);
 | |
| 							$cs = $f/$t;
 | |
| 							$sn = $g/$t;
 | |
| 							if ($j != $k) {
 | |
| 								$e[$j-1] = $t;
 | |
| 							}
 | |
| 							$f = $cs * $this->s[$j] + $sn * $e[$j];
 | |
| 							$e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
 | |
| 							$g = $sn * $this->s[$j+1];
 | |
| 							$this->s[$j+1] = $cs * $this->s[$j+1];
 | |
| 							if ($wantv) {
 | |
| 								for ($i = 0; $i < $this->n; ++$i) {
 | |
| 									$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1];
 | |
| 									$this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1];
 | |
| 									$this->V[$i][$j] = $t;
 | |
| 								}
 | |
| 							}
 | |
| 							$t = hypo($f,$g);
 | |
| 							$cs = $f/$t;
 | |
| 							$sn = $g/$t;
 | |
| 							$this->s[$j] = $t;
 | |
| 							$f = $cs * $e[$j] + $sn * $this->s[$j+1];
 | |
| 							$this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1];
 | |
| 							$g = $sn * $e[$j+1];
 | |
| 							$e[$j+1] = $cs * $e[$j+1];
 | |
| 							if ($wantu && ($j < $this->m - 1)) {
 | |
| 								for ($i = 0; $i < $this->m; ++$i) {
 | |
| 									$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1];
 | |
| 									$this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1];
 | |
| 									$this->U[$i][$j] = $t;
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						$e[$p-2] = $f;
 | |
| 						$iter = $iter + 1;
 | |
| 						break;
 | |
| 				// Convergence.
 | |
| 				case 4:
 | |
| 						// Make the singular values positive.
 | |
| 						if ($this->s[$k] <= 0.0) {
 | |
| 							$this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
 | |
| 							if ($wantv) {
 | |
| 								for ($i = 0; $i <= $pp; ++$i) {
 | |
| 									$this->V[$i][$k] = -$this->V[$i][$k];
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						// Order the singular values.
 | |
| 						while ($k < $pp) {
 | |
| 							if ($this->s[$k] >= $this->s[$k+1]) {
 | |
| 								break;
 | |
| 							}
 | |
| 							$t = $this->s[$k];
 | |
| 							$this->s[$k] = $this->s[$k+1];
 | |
| 							$this->s[$k+1] = $t;
 | |
| 							if ($wantv AND ($k < $this->n - 1)) {
 | |
| 								for ($i = 0; $i < $this->n; ++$i) {
 | |
| 									$t = $this->V[$i][$k+1];
 | |
| 									$this->V[$i][$k+1] = $this->V[$i][$k];
 | |
| 									$this->V[$i][$k] = $t;
 | |
| 								}
 | |
| 							}
 | |
| 							if ($wantu AND ($k < $this->m-1)) {
 | |
| 								for ($i = 0; $i < $this->m; ++$i) {
 | |
| 									$t = $this->U[$i][$k+1];
 | |
| 									$this->U[$i][$k+1] = $this->U[$i][$k];
 | |
| 									$this->U[$i][$k] = $t;
 | |
| 								}
 | |
| 							}
 | |
| 							++$k;
 | |
| 						}
 | |
| 						$iter = 0;
 | |
| 						--$p;
 | |
| 						break;
 | |
| 			} // end switch
 | |
| 		} // end while
 | |
| 
 | |
| 	} // end constructor
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return the left singular vectors
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return U
 | |
| 	 */
 | |
| 	public function getU() {
 | |
| 		return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return the right singular vectors
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return V
 | |
| 	 */
 | |
| 	public function getV() {
 | |
| 		return new Matrix($this->V);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return the one-dimensional array of singular values
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return diagonal of S.
 | |
| 	 */
 | |
| 	public function getSingularValues() {
 | |
| 		return $this->s;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return the diagonal matrix of singular values
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return S
 | |
| 	 */
 | |
| 	public function getS() {
 | |
| 		for ($i = 0; $i < $this->n; ++$i) {
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				$S[$i][$j] = 0.0;
 | |
| 			}
 | |
| 			$S[$i][$i] = $this->s[$i];
 | |
| 		}
 | |
| 		return new Matrix($S);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Two norm
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return max(S)
 | |
| 	 */
 | |
| 	public function norm2() {
 | |
| 		return $this->s[0];
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Two norm condition number
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return max(S)/min(S)
 | |
| 	 */
 | |
| 	public function cond() {
 | |
| 		return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Effective numerical matrix rank
 | |
| 	 *
 | |
| 	 *	@access public
 | |
| 	 *	@return Number of nonnegligible singular values.
 | |
| 	 */
 | |
| 	public function rank() {
 | |
| 		$eps = pow(2.0, -52.0);
 | |
| 		$tol = max($this->m, $this->n) * $this->s[0] * $eps;
 | |
| 		$r = 0;
 | |
| 		for ($i = 0; $i < count($this->s); ++$i) {
 | |
| 			if ($this->s[$i] > $tol) {
 | |
| 				++$r;
 | |
| 			}
 | |
| 		}
 | |
| 		return $r;
 | |
| 	}
 | |
| 
 | |
| }	//	class SingularValueDecomposition
 |