259 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| /**
 | |
|  *	@package JAMA
 | |
|  *
 | |
|  *	For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
 | |
|  *	unit lower triangular matrix L, an n-by-n upper triangular matrix U,
 | |
|  *	and a permutation vector piv of length m so that A(piv,:) = L*U.
 | |
|  *	If m < n, then L is m-by-m and U is m-by-n.
 | |
|  *
 | |
|  *	The LU decompostion with pivoting always exists, even if the matrix is
 | |
|  *	singular, so the constructor will never fail. The primary use of the
 | |
|  *	LU decomposition is in the solution of square systems of simultaneous
 | |
|  *	linear equations. This will fail if isNonsingular() returns false.
 | |
|  *
 | |
|  *	@author Paul Meagher
 | |
|  *	@author Bartosz Matosiuk
 | |
|  *	@author Michael Bommarito
 | |
|  *	@version 1.1
 | |
|  *	@license PHP v3.0
 | |
|  */
 | |
| class PHPExcel_Shared_JAMA_LUDecomposition {
 | |
| 
 | |
| 	const MatrixSingularException	= "Can only perform operation on singular matrix.";
 | |
| 	const MatrixSquareException		= "Mismatched Row dimension";
 | |
| 
 | |
| 	/**
 | |
| 	 *	Decomposition storage
 | |
| 	 *	@var array
 | |
| 	 */
 | |
| 	private $LU = array();
 | |
| 
 | |
| 	/**
 | |
| 	 *	Row dimension.
 | |
| 	 *	@var int
 | |
| 	 */
 | |
| 	private $m;
 | |
| 
 | |
| 	/**
 | |
| 	 *	Column dimension.
 | |
| 	 *	@var int
 | |
| 	 */
 | |
| 	private $n;
 | |
| 
 | |
| 	/**
 | |
| 	 *	Pivot sign.
 | |
| 	 *	@var int
 | |
| 	 */
 | |
| 	private $pivsign;
 | |
| 
 | |
| 	/**
 | |
| 	 *	Internal storage of pivot vector.
 | |
| 	 *	@var array
 | |
| 	 */
 | |
| 	private $piv = array();
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	LU Decomposition constructor.
 | |
| 	 *
 | |
| 	 *	@param $A Rectangular matrix
 | |
| 	 *	@return Structure to access L, U and piv.
 | |
| 	 */
 | |
| 	public function __construct($A) {
 | |
| 		if ($A instanceof PHPExcel_Shared_JAMA_Matrix) {
 | |
| 			// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
 | |
| 			$this->LU = $A->getArray();
 | |
| 			$this->m  = $A->getRowDimension();
 | |
| 			$this->n  = $A->getColumnDimension();
 | |
| 			for ($i = 0; $i < $this->m; ++$i) {
 | |
| 				$this->piv[$i] = $i;
 | |
| 			}
 | |
| 			$this->pivsign = 1;
 | |
| 			$LUrowi = $LUcolj = array();
 | |
| 
 | |
| 			// Outer loop.
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				// Make a copy of the j-th column to localize references.
 | |
| 				for ($i = 0; $i < $this->m; ++$i) {
 | |
| 					$LUcolj[$i] = &$this->LU[$i][$j];
 | |
| 				}
 | |
| 				// Apply previous transformations.
 | |
| 				for ($i = 0; $i < $this->m; ++$i) {
 | |
| 					$LUrowi = $this->LU[$i];
 | |
| 					// Most of the time is spent in the following dot product.
 | |
| 					$kmax = min($i,$j);
 | |
| 					$s = 0.0;
 | |
| 					for ($k = 0; $k < $kmax; ++$k) {
 | |
| 						$s += $LUrowi[$k] * $LUcolj[$k];
 | |
| 					}
 | |
| 					$LUrowi[$j] = $LUcolj[$i] -= $s;
 | |
| 				}
 | |
| 				// Find pivot and exchange if necessary.
 | |
| 				$p = $j;
 | |
| 				for ($i = $j+1; $i < $this->m; ++$i) {
 | |
| 					if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {
 | |
| 						$p = $i;
 | |
| 					}
 | |
| 				}
 | |
| 				if ($p != $j) {
 | |
| 					for ($k = 0; $k < $this->n; ++$k) {
 | |
| 						$t = $this->LU[$p][$k];
 | |
| 						$this->LU[$p][$k] = $this->LU[$j][$k];
 | |
| 						$this->LU[$j][$k] = $t;
 | |
| 					}
 | |
| 					$k = $this->piv[$p];
 | |
| 					$this->piv[$p] = $this->piv[$j];
 | |
| 					$this->piv[$j] = $k;
 | |
| 					$this->pivsign = $this->pivsign * -1;
 | |
| 				}
 | |
| 				// Compute multipliers.
 | |
| 				if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {
 | |
| 					for ($i = $j+1; $i < $this->m; ++$i) {
 | |
| 						$this->LU[$i][$j] /= $this->LU[$j][$j];
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			throw new PHPExcel_Calculation_Exception(PHPExcel_Shared_JAMA_Matrix::ArgumentTypeException);
 | |
| 		}
 | |
| 	}	//	function __construct()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Get lower triangular factor.
 | |
| 	 *
 | |
| 	 *	@return array Lower triangular factor
 | |
| 	 */
 | |
| 	public function getL() {
 | |
| 		for ($i = 0; $i < $this->m; ++$i) {
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				if ($i > $j) {
 | |
| 					$L[$i][$j] = $this->LU[$i][$j];
 | |
| 				} elseif ($i == $j) {
 | |
| 					$L[$i][$j] = 1.0;
 | |
| 				} else {
 | |
| 					$L[$i][$j] = 0.0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return new PHPExcel_Shared_JAMA_Matrix($L);
 | |
| 	}	//	function getL()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Get upper triangular factor.
 | |
| 	 *
 | |
| 	 *	@return array Upper triangular factor
 | |
| 	 */
 | |
| 	public function getU() {
 | |
| 		for ($i = 0; $i < $this->n; ++$i) {
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				if ($i <= $j) {
 | |
| 					$U[$i][$j] = $this->LU[$i][$j];
 | |
| 				} else {
 | |
| 					$U[$i][$j] = 0.0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return new PHPExcel_Shared_JAMA_Matrix($U);
 | |
| 	}	//	function getU()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return pivot permutation vector.
 | |
| 	 *
 | |
| 	 *	@return array Pivot vector
 | |
| 	 */
 | |
| 	public function getPivot() {
 | |
| 		return $this->piv;
 | |
| 	}	//	function getPivot()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Alias for getPivot
 | |
| 	 *
 | |
| 	 *	@see getPivot
 | |
| 	 */
 | |
| 	public function getDoublePivot() {
 | |
| 		return $this->getPivot();
 | |
| 	}	//	function getDoublePivot()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Is the matrix nonsingular?
 | |
| 	 *
 | |
| 	 *	@return true if U, and hence A, is nonsingular.
 | |
| 	 */
 | |
| 	public function isNonsingular() {
 | |
| 		for ($j = 0; $j < $this->n; ++$j) {
 | |
| 			if ($this->LU[$j][$j] == 0) {
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 		return true;
 | |
| 	}	//	function isNonsingular()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Count determinants
 | |
| 	 *
 | |
| 	 *	@return array d matrix deterninat
 | |
| 	 */
 | |
| 	public function det() {
 | |
| 		if ($this->m == $this->n) {
 | |
| 			$d = $this->pivsign;
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				$d *= $this->LU[$j][$j];
 | |
| 			}
 | |
| 			return $d;
 | |
| 		} else {
 | |
| 			throw new PHPExcel_Calculation_Exception(PHPExcel_Shared_JAMA_Matrix::MatrixDimensionException);
 | |
| 		}
 | |
| 	}	//	function det()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Solve A*X = B
 | |
| 	 *
 | |
| 	 *	@param  $B  A Matrix with as many rows as A and any number of columns.
 | |
| 	 *	@return  X so that L*U*X = B(piv,:)
 | |
| 	 *	@PHPExcel_Calculation_Exception  IllegalArgumentException Matrix row dimensions must agree.
 | |
| 	 *	@PHPExcel_Calculation_Exception  RuntimeException  Matrix is singular.
 | |
| 	 */
 | |
| 	public function solve($B) {
 | |
| 		if ($B->getRowDimension() == $this->m) {
 | |
| 			if ($this->isNonsingular()) {
 | |
| 				// Copy right hand side with pivoting
 | |
| 				$nx = $B->getColumnDimension();
 | |
| 				$X  = $B->getMatrix($this->piv, 0, $nx-1);
 | |
| 				// Solve L*Y = B(piv,:)
 | |
| 				for ($k = 0; $k < $this->n; ++$k) {
 | |
| 					for ($i = $k+1; $i < $this->n; ++$i) {
 | |
| 						for ($j = 0; $j < $nx; ++$j) {
 | |
| 							$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				// Solve U*X = Y;
 | |
| 				for ($k = $this->n-1; $k >= 0; --$k) {
 | |
| 					for ($j = 0; $j < $nx; ++$j) {
 | |
| 						$X->A[$k][$j] /= $this->LU[$k][$k];
 | |
| 					}
 | |
| 					for ($i = 0; $i < $k; ++$i) {
 | |
| 						for ($j = 0; $j < $nx; ++$j) {
 | |
| 							$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				return $X;
 | |
| 			} else {
 | |
| 				throw new PHPExcel_Calculation_Exception(self::MatrixSingularException);
 | |
| 			}
 | |
| 		} else {
 | |
| 			throw new PHPExcel_Calculation_Exception(self::MatrixSquareException);
 | |
| 		}
 | |
| 	}	//	function solve()
 | |
| 
 | |
| }	//	class PHPExcel_Shared_JAMA_LUDecomposition
 | 
