 509f27e5c6
			
		
	
	
		509f27e5c6
		
	
	
	
	
		
			
			git-svn-id: https://phpexcel.svn.codeplex.com/svn/trunk@59884 2327b42d-5241-43d6-9e2a-de5ac946f064
		
			
				
	
	
		
			186 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| 
 | |
| // Levenberg-Marquardt in PHP
 | |
| 
 | |
| // http://www.idiom.com/~zilla/Computer/Javanumeric/LM.java
 | |
| 
 | |
| class LevenbergMarquardt {
 | |
| 
 | |
| 	/**
 | |
| 	 * Calculate the current sum-squared-error
 | |
| 	 *
 | |
| 	 * Chi-squared is the distribution of squared Gaussian errors,
 | |
| 	 * thus the name.
 | |
| 	 *
 | |
| 	 * @param double[][] $x
 | |
| 	 * @param double[] $a
 | |
| 	 * @param double[] $y,
 | |
| 	 * @param double[] $s,
 | |
| 	 * @param object $f
 | |
| 	 */
 | |
| 	function chiSquared($x, $a, $y, $s, $f) {
 | |
| 		$npts = count($y);
 | |
| 		$sum = 0.0;
 | |
| 
 | |
| 		for ($i = 0; $i < $npts; ++$i) {
 | |
| 			$d = $y[$i] - $f->val($x[$i], $a);
 | |
| 			$d = $d / $s[$i];
 | |
| 			$sum = $sum + ($d*$d);
 | |
| 		}
 | |
| 
 | |
| 		return $sum;
 | |
| 	}	//	function chiSquared()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Minimize E = sum {(y[k] - f(x[k],a)) / s[k]}^2
 | |
| 	 * The individual errors are optionally scaled by s[k].
 | |
| 	 * Note that LMfunc implements the value and gradient of f(x,a),
 | |
| 	 * NOT the value and gradient of E with respect to a!
 | |
| 	 *
 | |
| 	 * @param x array of domain points, each may be multidimensional
 | |
| 	 * @param y corresponding array of values
 | |
| 	 * @param a the parameters/state of the model
 | |
| 	 * @param vary false to indicate the corresponding a[k] is to be held fixed
 | |
| 	 * @param s2 sigma^2 for point i
 | |
| 	 * @param lambda blend between steepest descent (lambda high) and
 | |
| 	 *	jump to bottom of quadratic (lambda zero).
 | |
| 	 * 	Start with 0.001.
 | |
| 	 * @param termepsilon termination accuracy (0.01)
 | |
| 	 * @param maxiter	stop and return after this many iterations if not done
 | |
| 	 * @param verbose	set to zero (no prints), 1, 2
 | |
| 	 *
 | |
| 	 * @return the new lambda for future iterations.
 | |
| 	 *  Can use this and maxiter to interleave the LM descent with some other
 | |
| 	 *  task, setting maxiter to something small.
 | |
| 	 */
 | |
| 	function solve($x, $a, $y, $s, $vary, $f, $lambda, $termepsilon, $maxiter, $verbose) {
 | |
| 		$npts = count($y);
 | |
| 		$nparm = count($a);
 | |
| 
 | |
| 		if ($verbose > 0) {
 | |
| 			print("solve x[".count($x)."][".count($x[0])."]");
 | |
| 			print(" a[".count($a)."]");
 | |
| 			println(" y[".count(length)."]");
 | |
| 		}
 | |
| 
 | |
| 		$e0 = $this->chiSquared($x, $a, $y, $s, $f);
 | |
| 
 | |
| 		//double lambda = 0.001;
 | |
| 		$done = false;
 | |
| 
 | |
| 		// g = gradient, H = hessian, d = step to minimum
 | |
| 		// H d = -g, solve for d
 | |
| 		$H = array();
 | |
| 		$g = array();
 | |
| 
 | |
| 		//double[] d = new double[nparm];
 | |
| 
 | |
| 		$oos2 = array();
 | |
| 
 | |
| 		for($i = 0; $i < $npts; ++$i) {
 | |
| 			$oos2[$i] = 1./($s[$i]*$s[$i]);
 | |
| 		}
 | |
| 		$iter = 0;
 | |
| 		$term = 0;	// termination count test
 | |
| 
 | |
| 		do {
 | |
| 			++$iter;
 | |
| 
 | |
| 			// hessian approximation
 | |
| 			for( $r = 0; $r < $nparm; ++$r) {
 | |
| 				for( $c = 0; $c < $nparm; ++$c) {
 | |
| 					for( $i = 0; $i < $npts; ++$i) {
 | |
| 						if ($i == 0) $H[$r][$c] = 0.;
 | |
| 						$xi = $x[$i];
 | |
| 						$H[$r][$c] += ($oos2[$i] * $f->grad($xi, $a, $r) * $f->grad($xi, $a, $c));
 | |
| 					}  //npts
 | |
| 				} //c
 | |
| 			} //r
 | |
| 
 | |
| 			// boost diagonal towards gradient descent
 | |
| 			for( $r = 0; $r < $nparm; ++$r)
 | |
| 				$H[$r][$r] *= (1. + $lambda);
 | |
| 
 | |
| 			// gradient
 | |
| 			for( $r = 0; $r < $nparm; ++$r) {
 | |
| 				for( $i = 0; $i < $npts; ++$i) {
 | |
| 					if ($i == 0) $g[$r] = 0.;
 | |
| 					$xi = $x[$i];
 | |
| 					$g[$r] += ($oos2[$i] * ($y[$i]-$f->val($xi,$a)) * $f->grad($xi, $a, $r));
 | |
| 				}
 | |
| 			} //npts
 | |
| 
 | |
| 			// scale (for consistency with NR, not necessary)
 | |
| 			if ($false) {
 | |
| 				for( $r = 0; $r < $nparm; ++$r) {
 | |
| 					$g[$r] = -0.5 * $g[$r];
 | |
| 					for( $c = 0; $c < $nparm; ++$c) {
 | |
| 						$H[$r][$c] *= 0.5;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// solve H d = -g, evaluate error at new location
 | |
| 			//double[] d = DoubleMatrix.solve(H, g);
 | |
| //			double[] d = (new Matrix(H)).lu().solve(new Matrix(g, nparm)).getRowPackedCopy();
 | |
| 			//double[] na = DoubleVector.add(a, d);
 | |
| //			double[] na = (new Matrix(a, nparm)).plus(new Matrix(d, nparm)).getRowPackedCopy();
 | |
| //			double e1 = chiSquared(x, na, y, s, f);
 | |
| 
 | |
| //			if (verbose > 0) {
 | |
| //				System.out.println("\n\niteration "+iter+" lambda = "+lambda);
 | |
| //				System.out.print("a = ");
 | |
| //				(new Matrix(a, nparm)).print(10, 2);
 | |
| //				if (verbose > 1) {
 | |
| //					System.out.print("H = ");
 | |
| //					(new Matrix(H)).print(10, 2);
 | |
| //					System.out.print("g = ");
 | |
| //					(new Matrix(g, nparm)).print(10, 2);
 | |
| //					System.out.print("d = ");
 | |
| //					(new Matrix(d, nparm)).print(10, 2);
 | |
| //				}
 | |
| //				System.out.print("e0 = " + e0 + ": ");
 | |
| //				System.out.print("moved from ");
 | |
| //				(new Matrix(a, nparm)).print(10, 2);
 | |
| //				System.out.print("e1 = " + e1 + ": ");
 | |
| //				if (e1 < e0) {
 | |
| //					System.out.print("to ");
 | |
| //					(new Matrix(na, nparm)).print(10, 2);
 | |
| //				} else {
 | |
| //					System.out.println("move rejected");
 | |
| //				}
 | |
| //			}
 | |
| 
 | |
| 			// termination test (slightly different than NR)
 | |
| //			if (Math.abs(e1-e0) > termepsilon) {
 | |
| //				term = 0;
 | |
| //			} else {
 | |
| //				term++;
 | |
| //				if (term == 4) {
 | |
| //					System.out.println("terminating after " + iter + " iterations");
 | |
| //					done = true;
 | |
| //				}
 | |
| //			}
 | |
| //			if (iter >= maxiter) done = true;
 | |
| 
 | |
| 			// in the C++ version, found that changing this to e1 >= e0
 | |
| 			// was not a good idea.  See comment there.
 | |
| 			//
 | |
| //			if (e1 > e0 || Double.isNaN(e1)) { // new location worse than before
 | |
| //				lambda *= 10.;
 | |
| //			} else {		// new location better, accept new parameters
 | |
| //				lambda *= 0.1;
 | |
| //				e0 = e1;
 | |
| //				// simply assigning a = na will not get results copied back to caller
 | |
| //				for( int i = 0; i < nparm; i++ ) {
 | |
| //					if (vary[i]) a[i] = na[i];
 | |
| //				}
 | |
| //			}
 | |
| 		} while(!$done);
 | |
| 
 | |
| 		return $lambda;
 | |
| 	}	//	function solve()
 | |
| 
 | |
| }	//	class LevenbergMarquardt
 |