 4f76dfad97
			
		
	
	
		4f76dfad97
		
	
	
	
	
		
			
			git-svn-id: https://phpexcel.svn.codeplex.com/svn/trunk@87695 2327b42d-5241-43d6-9e2a-de5ac946f064
		
			
				
	
	
		
			3645 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			3645 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| /**
 | |
|  * PHPExcel
 | |
|  *
 | |
|  * Copyright (c) 2006 - 2012 PHPExcel
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  * @category	PHPExcel
 | |
|  * @package		PHPExcel_Calculation
 | |
|  * @copyright	Copyright (c) 2006 - 2012 PHPExcel (http://www.codeplex.com/PHPExcel)
 | |
|  * @license		http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt	LGPL
 | |
|  * @version		##VERSION##, ##DATE##
 | |
|  */
 | |
| 
 | |
| 
 | |
| /** PHPExcel root directory */
 | |
| if (!defined('PHPEXCEL_ROOT')) {
 | |
| 	/**
 | |
| 	 * @ignore
 | |
| 	 */
 | |
| 	define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');
 | |
| 	require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');
 | |
| }
 | |
| 
 | |
| 
 | |
| require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';
 | |
| 
 | |
| 
 | |
| /** LOG_GAMMA_X_MAX_VALUE */
 | |
| define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);
 | |
| 
 | |
| /** XMININ */
 | |
| define('XMININ', 2.23e-308);
 | |
| 
 | |
| /** EPS */
 | |
| define('EPS', 2.22e-16);
 | |
| 
 | |
| /** SQRT2PI */
 | |
| define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * PHPExcel_Calculation_Statistical
 | |
|  *
 | |
|  * @category	PHPExcel
 | |
|  * @package		PHPExcel_Calculation
 | |
|  * @copyright	Copyright (c) 2006 - 2012 PHPExcel (http://www.codeplex.com/PHPExcel)
 | |
|  */
 | |
| class PHPExcel_Calculation_Statistical {
 | |
| 
 | |
| 
 | |
| 	private static function _checkTrendArrays(&$array1,&$array2) {
 | |
| 		if (!is_array($array1)) { $array1 = array($array1); }
 | |
| 		if (!is_array($array2)) { $array2 = array($array2); }
 | |
| 
 | |
| 		$array1 = PHPExcel_Calculation_Functions::flattenArray($array1);
 | |
| 		$array2 = PHPExcel_Calculation_Functions::flattenArray($array2);
 | |
| 		foreach($array1 as $key => $value) {
 | |
| 			if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
 | |
| 				unset($array1[$key]);
 | |
| 				unset($array2[$key]);
 | |
| 			}
 | |
| 		}
 | |
| 		foreach($array2 as $key => $value) {
 | |
| 			if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
 | |
| 				unset($array1[$key]);
 | |
| 				unset($array2[$key]);
 | |
| 			}
 | |
| 		}
 | |
| 		$array1 = array_merge($array1);
 | |
| 		$array2 = array_merge($array2);
 | |
| 
 | |
| 		return True;
 | |
| 	}	//	function _checkTrendArrays()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Beta function.
 | |
| 	 *
 | |
| 	 * @author Jaco van Kooten
 | |
| 	 *
 | |
| 	 * @param p require p>0
 | |
| 	 * @param q require q>0
 | |
| 	 * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
 | |
| 	 */
 | |
| 	private static function _beta($p, $q) {
 | |
| 		if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {
 | |
| 			return 0.0;
 | |
| 		} else {
 | |
| 			return exp(self::_logBeta($p, $q));
 | |
| 		}
 | |
| 	}	//	function _beta()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Incomplete beta function
 | |
| 	 *
 | |
| 	 * @author Jaco van Kooten
 | |
| 	 * @author Paul Meagher
 | |
| 	 *
 | |
| 	 * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
 | |
| 	 * @param x require 0<=x<=1
 | |
| 	 * @param p require p>0
 | |
| 	 * @param q require q>0
 | |
| 	 * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
 | |
| 	 */
 | |
| 	private static function _incompleteBeta($x, $p, $q) {
 | |
| 		if ($x <= 0.0) {
 | |
| 			return 0.0;
 | |
| 		} elseif ($x >= 1.0) {
 | |
| 			return 1.0;
 | |
| 		} elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
 | |
| 			return 0.0;
 | |
| 		}
 | |
| 		$beta_gam = exp((0 - self::_logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
 | |
| 		if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
 | |
| 			return $beta_gam * self::_betaFraction($x, $p, $q) / $p;
 | |
| 		} else {
 | |
| 			return 1.0 - ($beta_gam * self::_betaFraction(1 - $x, $q, $p) / $q);
 | |
| 		}
 | |
| 	}	//	function _incompleteBeta()
 | |
| 
 | |
| 
 | |
| 	// Function cache for _logBeta function
 | |
| 	private static $_logBetaCache_p			= 0.0;
 | |
| 	private static $_logBetaCache_q			= 0.0;
 | |
| 	private static $_logBetaCache_result	= 0.0;
 | |
| 
 | |
| 	/**
 | |
| 	 * The natural logarithm of the beta function.
 | |
| 	 *
 | |
| 	 * @param p require p>0
 | |
| 	 * @param q require q>0
 | |
| 	 * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
 | |
| 	 * @author Jaco van Kooten
 | |
| 	 */
 | |
| 	private static function _logBeta($p, $q) {
 | |
| 		if ($p != self::$_logBetaCache_p || $q != self::$_logBetaCache_q) {
 | |
| 			self::$_logBetaCache_p = $p;
 | |
| 			self::$_logBetaCache_q = $q;
 | |
| 			if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
 | |
| 				self::$_logBetaCache_result = 0.0;
 | |
| 			} else {
 | |
| 				self::$_logBetaCache_result = self::_logGamma($p) + self::_logGamma($q) - self::_logGamma($p + $q);
 | |
| 			}
 | |
| 		}
 | |
| 		return self::$_logBetaCache_result;
 | |
| 	}	//	function _logBeta()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * Evaluates of continued fraction part of incomplete beta function.
 | |
| 	 * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
 | |
| 	 * @author Jaco van Kooten
 | |
| 	 */
 | |
| 	private static function _betaFraction($x, $p, $q) {
 | |
| 		$c = 1.0;
 | |
| 		$sum_pq = $p + $q;
 | |
| 		$p_plus = $p + 1.0;
 | |
| 		$p_minus = $p - 1.0;
 | |
| 		$h = 1.0 - $sum_pq * $x / $p_plus;
 | |
| 		if (abs($h) < XMININ) {
 | |
| 			$h = XMININ;
 | |
| 		}
 | |
| 		$h = 1.0 / $h;
 | |
| 		$frac = $h;
 | |
| 		$m	 = 1;
 | |
| 		$delta = 0.0;
 | |
| 		while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION ) {
 | |
| 			$m2 = 2 * $m;
 | |
| 			// even index for d
 | |
| 			$d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));
 | |
| 			$h = 1.0 + $d * $h;
 | |
| 			if (abs($h) < XMININ) {
 | |
| 				$h = XMININ;
 | |
| 			}
 | |
| 			$h = 1.0 / $h;
 | |
| 			$c = 1.0 + $d / $c;
 | |
| 			if (abs($c) < XMININ) {
 | |
| 				$c = XMININ;
 | |
| 			}
 | |
| 			$frac *= $h * $c;
 | |
| 			// odd index for d
 | |
| 			$d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
 | |
| 			$h = 1.0 + $d * $h;
 | |
| 			if (abs($h) < XMININ) {
 | |
| 				$h = XMININ;
 | |
| 			}
 | |
| 			$h = 1.0 / $h;
 | |
| 			$c = 1.0 + $d / $c;
 | |
| 			if (abs($c) < XMININ) {
 | |
| 				$c = XMININ;
 | |
| 			}
 | |
| 			$delta = $h * $c;
 | |
| 			$frac *= $delta;
 | |
| 			++$m;
 | |
| 		}
 | |
| 		return $frac;
 | |
| 	}	//	function _betaFraction()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * logGamma function
 | |
| 	 *
 | |
| 	 * @version 1.1
 | |
| 	 * @author Jaco van Kooten
 | |
| 	 *
 | |
| 	 * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
 | |
| 	 *
 | |
| 	 * The natural logarithm of the gamma function. <br />
 | |
| 	 * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
 | |
| 	 * Applied Mathematics Division <br />
 | |
| 	 * Argonne National Laboratory <br />
 | |
| 	 * Argonne, IL 60439 <br />
 | |
| 	 * <p>
 | |
| 	 * References:
 | |
| 	 * <ol>
 | |
| 	 * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
 | |
| 	 *	 Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
 | |
| 	 * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
 | |
| 	 * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
 | |
| 	 * </ol>
 | |
| 	 * </p>
 | |
| 	 * <p>
 | |
| 	 * From the original documentation:
 | |
| 	 * </p>
 | |
| 	 * <p>
 | |
| 	 * This routine calculates the LOG(GAMMA) function for a positive real argument X.
 | |
| 	 * Computation is based on an algorithm outlined in references 1 and 2.
 | |
| 	 * The program uses rational functions that theoretically approximate LOG(GAMMA)
 | |
| 	 * to at least 18 significant decimal digits. The approximation for X > 12 is from
 | |
| 	 * reference 3, while approximations for X < 12.0 are similar to those in reference
 | |
| 	 * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
 | |
| 	 * the compiler, the intrinsic functions, and proper selection of the
 | |
| 	 * machine-dependent constants.
 | |
| 	 * </p>
 | |
| 	 * <p>
 | |
| 	 * Error returns: <br />
 | |
| 	 * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
 | |
| 	 * The computation is believed to be free of underflow and overflow.
 | |
| 	 * </p>
 | |
| 	 * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
 | |
| 	 */
 | |
| 
 | |
| 	// Function cache for logGamma
 | |
| 	private static $_logGammaCache_result	= 0.0;
 | |
| 	private static $_logGammaCache_x		= 0.0;
 | |
| 
 | |
| 	private static function _logGamma($x) {
 | |
| 		// Log Gamma related constants
 | |
| 		static $lg_d1 = -0.5772156649015328605195174;
 | |
| 		static $lg_d2 = 0.4227843350984671393993777;
 | |
| 		static $lg_d4 = 1.791759469228055000094023;
 | |
| 
 | |
| 		static $lg_p1 = array(	4.945235359296727046734888,
 | |
| 								201.8112620856775083915565,
 | |
| 								2290.838373831346393026739,
 | |
| 								11319.67205903380828685045,
 | |
| 								28557.24635671635335736389,
 | |
| 								38484.96228443793359990269,
 | |
| 								26377.48787624195437963534,
 | |
| 								7225.813979700288197698961 );
 | |
| 		static $lg_p2 = array(	4.974607845568932035012064,
 | |
| 								542.4138599891070494101986,
 | |
| 								15506.93864978364947665077,
 | |
| 								184793.2904445632425417223,
 | |
| 								1088204.76946882876749847,
 | |
| 								3338152.967987029735917223,
 | |
| 								5106661.678927352456275255,
 | |
| 								3074109.054850539556250927 );
 | |
| 		static $lg_p4 = array(	14745.02166059939948905062,
 | |
| 								2426813.369486704502836312,
 | |
| 								121475557.4045093227939592,
 | |
| 								2663432449.630976949898078,
 | |
| 								29403789566.34553899906876,
 | |
| 								170266573776.5398868392998,
 | |
| 								492612579337.743088758812,
 | |
| 								560625185622.3951465078242 );
 | |
| 
 | |
| 		static $lg_q1 = array(	67.48212550303777196073036,
 | |
| 								1113.332393857199323513008,
 | |
| 								7738.757056935398733233834,
 | |
| 								27639.87074403340708898585,
 | |
| 								54993.10206226157329794414,
 | |
| 								61611.22180066002127833352,
 | |
| 								36351.27591501940507276287,
 | |
| 								8785.536302431013170870835 );
 | |
| 		static $lg_q2 = array(	183.0328399370592604055942,
 | |
| 								7765.049321445005871323047,
 | |
| 								133190.3827966074194402448,
 | |
| 								1136705.821321969608938755,
 | |
| 								5267964.117437946917577538,
 | |
| 								13467014.54311101692290052,
 | |
| 								17827365.30353274213975932,
 | |
| 								9533095.591844353613395747 );
 | |
| 		static $lg_q4 = array(	2690.530175870899333379843,
 | |
| 								639388.5654300092398984238,
 | |
| 								41355999.30241388052042842,
 | |
| 								1120872109.61614794137657,
 | |
| 								14886137286.78813811542398,
 | |
| 								101680358627.2438228077304,
 | |
| 								341747634550.7377132798597,
 | |
| 								446315818741.9713286462081 );
 | |
| 
 | |
| 		static $lg_c  = array(	-0.001910444077728,
 | |
| 								8.4171387781295e-4,
 | |
| 								-5.952379913043012e-4,
 | |
| 								7.93650793500350248e-4,
 | |
| 								-0.002777777777777681622553,
 | |
| 								0.08333333333333333331554247,
 | |
| 								0.0057083835261 );
 | |
| 
 | |
| 	// Rough estimate of the fourth root of logGamma_xBig
 | |
| 	static $lg_frtbig = 2.25e76;
 | |
| 	static $pnt68	 = 0.6796875;
 | |
| 
 | |
| 
 | |
| 	if ($x == self::$_logGammaCache_x) {
 | |
| 		return self::$_logGammaCache_result;
 | |
| 	}
 | |
| 	$y = $x;
 | |
| 	if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {
 | |
| 		if ($y <= EPS) {
 | |
| 			$res = -log(y);
 | |
| 		} elseif ($y <= 1.5) {
 | |
| 			// ---------------------
 | |
| 			//	EPS .LT. X .LE. 1.5
 | |
| 			// ---------------------
 | |
| 			if ($y < $pnt68) {
 | |
| 				$corr = -log($y);
 | |
| 				$xm1 = $y;
 | |
| 			} else {
 | |
| 				$corr = 0.0;
 | |
| 				$xm1 = $y - 1.0;
 | |
| 			}
 | |
| 			if ($y <= 0.5 || $y >= $pnt68) {
 | |
| 				$xden = 1.0;
 | |
| 				$xnum = 0.0;
 | |
| 				for ($i = 0; $i < 8; ++$i) {
 | |
| 					$xnum = $xnum * $xm1 + $lg_p1[$i];
 | |
| 					$xden = $xden * $xm1 + $lg_q1[$i];
 | |
| 				}
 | |
| 				$res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
 | |
| 			} else {
 | |
| 				$xm2 = $y - 1.0;
 | |
| 				$xden = 1.0;
 | |
| 				$xnum = 0.0;
 | |
| 				for ($i = 0; $i < 8; ++$i) {
 | |
| 					$xnum = $xnum * $xm2 + $lg_p2[$i];
 | |
| 					$xden = $xden * $xm2 + $lg_q2[$i];
 | |
| 				}
 | |
| 				$res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
 | |
| 			}
 | |
| 		} elseif ($y <= 4.0) {
 | |
| 			// ---------------------
 | |
| 			//	1.5 .LT. X .LE. 4.0
 | |
| 			// ---------------------
 | |
| 			$xm2 = $y - 2.0;
 | |
| 			$xden = 1.0;
 | |
| 			$xnum = 0.0;
 | |
| 			for ($i = 0; $i < 8; ++$i) {
 | |
| 				$xnum = $xnum * $xm2 + $lg_p2[$i];
 | |
| 				$xden = $xden * $xm2 + $lg_q2[$i];
 | |
| 			}
 | |
| 			$res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
 | |
| 		} elseif ($y <= 12.0) {
 | |
| 			// ----------------------
 | |
| 			//	4.0 .LT. X .LE. 12.0
 | |
| 			// ----------------------
 | |
| 			$xm4 = $y - 4.0;
 | |
| 			$xden = -1.0;
 | |
| 			$xnum = 0.0;
 | |
| 			for ($i = 0; $i < 8; ++$i) {
 | |
| 				$xnum = $xnum * $xm4 + $lg_p4[$i];
 | |
| 				$xden = $xden * $xm4 + $lg_q4[$i];
 | |
| 			}
 | |
| 			$res = $lg_d4 + $xm4 * ($xnum / $xden);
 | |
| 		} else {
 | |
| 			// ---------------------------------
 | |
| 			//	Evaluate for argument .GE. 12.0
 | |
| 			// ---------------------------------
 | |
| 			$res = 0.0;
 | |
| 			if ($y <= $lg_frtbig) {
 | |
| 				$res = $lg_c[6];
 | |
| 				$ysq = $y * $y;
 | |
| 				for ($i = 0; $i < 6; ++$i)
 | |
| 					$res = $res / $ysq + $lg_c[$i];
 | |
| 				}
 | |
| 				$res /= $y;
 | |
| 				$corr = log($y);
 | |
| 				$res = $res + log(SQRT2PI) - 0.5 * $corr;
 | |
| 				$res += $y * ($corr - 1.0);
 | |
| 			}
 | |
| 		} else {
 | |
| 			// --------------------------
 | |
| 			//	Return for bad arguments
 | |
| 			// --------------------------
 | |
| 			$res = MAX_VALUE;
 | |
| 		}
 | |
| 		// ------------------------------
 | |
| 		//	Final adjustments and return
 | |
| 		// ------------------------------
 | |
| 		self::$_logGammaCache_x = $x;
 | |
| 		self::$_logGammaCache_result = $res;
 | |
| 		return $res;
 | |
| 	}	//	function _logGamma()
 | |
| 
 | |
| 
 | |
| 	//
 | |
| 	//	Private implementation of the incomplete Gamma function
 | |
| 	//
 | |
| 	private static function _incompleteGamma($a,$x) {
 | |
| 		static $max = 32;
 | |
| 		$summer = 0;
 | |
| 		for ($n=0; $n<=$max; ++$n) {
 | |
| 			$divisor = $a;
 | |
| 			for ($i=1; $i<=$n; ++$i) {
 | |
| 				$divisor *= ($a + $i);
 | |
| 			}
 | |
| 			$summer += (pow($x,$n) / $divisor);
 | |
| 		}
 | |
| 		return pow($x,$a) * exp(0-$x) * $summer;
 | |
| 	}	//	function _incompleteGamma()
 | |
| 
 | |
| 
 | |
| 	//
 | |
| 	//	Private implementation of the Gamma function
 | |
| 	//
 | |
| 	private static function _gamma($data) {
 | |
| 		if ($data == 0.0) return 0;
 | |
| 
 | |
| 		static $p0 = 1.000000000190015;
 | |
| 		static $p = array ( 1 => 76.18009172947146,
 | |
| 							2 => -86.50532032941677,
 | |
| 							3 => 24.01409824083091,
 | |
| 							4 => -1.231739572450155,
 | |
| 							5 => 1.208650973866179e-3,
 | |
| 							6 => -5.395239384953e-6
 | |
| 						  );
 | |
| 
 | |
| 		$y = $x = $data;
 | |
| 		$tmp = $x + 5.5;
 | |
| 		$tmp -= ($x + 0.5) * log($tmp);
 | |
| 
 | |
| 		$summer = $p0;
 | |
| 		for ($j=1;$j<=6;++$j) {
 | |
| 			$summer += ($p[$j] / ++$y);
 | |
| 		}
 | |
| 		return exp(0 - $tmp + log(SQRT2PI * $summer / $x));
 | |
| 	}	//	function _gamma()
 | |
| 
 | |
| 
 | |
| 	/***************************************************************************
 | |
| 	 *								inverse_ncdf.php
 | |
| 	 *							-------------------
 | |
| 	 *	begin				: Friday, January 16, 2004
 | |
| 	 *	copyright			: (C) 2004 Michael Nickerson
 | |
| 	 *	email				: nickersonm@yahoo.com
 | |
| 	 *
 | |
| 	 ***************************************************************************/
 | |
| 	private static function _inverse_ncdf($p) {
 | |
| 		//	Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
 | |
| 		//	PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
 | |
| 		//	a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
 | |
| 		//	I have not checked the accuracy of this implementation. Be aware that PHP
 | |
| 		//	will truncate the coeficcients to 14 digits.
 | |
| 
 | |
| 		//	You have permission to use and distribute this function freely for
 | |
| 		//	whatever purpose you want, but please show common courtesy and give credit
 | |
| 		//	where credit is due.
 | |
| 
 | |
| 		//	Input paramater is $p - probability - where 0 < p < 1.
 | |
| 
 | |
| 		//	Coefficients in rational approximations
 | |
| 		static $a = array(	1 => -3.969683028665376e+01,
 | |
| 							2 => 2.209460984245205e+02,
 | |
| 							3 => -2.759285104469687e+02,
 | |
| 							4 => 1.383577518672690e+02,
 | |
| 							5 => -3.066479806614716e+01,
 | |
| 							6 => 2.506628277459239e+00
 | |
| 						 );
 | |
| 
 | |
| 		static $b = array(	1 => -5.447609879822406e+01,
 | |
| 							2 => 1.615858368580409e+02,
 | |
| 							3 => -1.556989798598866e+02,
 | |
| 							4 => 6.680131188771972e+01,
 | |
| 							5 => -1.328068155288572e+01
 | |
| 						 );
 | |
| 
 | |
| 		static $c = array(	1 => -7.784894002430293e-03,
 | |
| 							2 => -3.223964580411365e-01,
 | |
| 							3 => -2.400758277161838e+00,
 | |
| 							4 => -2.549732539343734e+00,
 | |
| 							5 => 4.374664141464968e+00,
 | |
| 							6 => 2.938163982698783e+00
 | |
| 						 );
 | |
| 
 | |
| 		static $d = array(	1 => 7.784695709041462e-03,
 | |
| 							2 => 3.224671290700398e-01,
 | |
| 							3 => 2.445134137142996e+00,
 | |
| 							4 => 3.754408661907416e+00
 | |
| 						 );
 | |
| 
 | |
| 		//	Define lower and upper region break-points.
 | |
| 		$p_low = 0.02425;			//Use lower region approx. below this
 | |
| 		$p_high = 1 - $p_low;		//Use upper region approx. above this
 | |
| 
 | |
| 		if (0 < $p && $p < $p_low) {
 | |
| 			//	Rational approximation for lower region.
 | |
| 			$q = sqrt(-2 * log($p));
 | |
| 			return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
 | |
| 					(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
 | |
| 		} elseif ($p_low <= $p && $p <= $p_high) {
 | |
| 			//	Rational approximation for central region.
 | |
| 			$q = $p - 0.5;
 | |
| 			$r = $q * $q;
 | |
| 			return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
 | |
| 				   ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
 | |
| 		} elseif ($p_high < $p && $p < 1) {
 | |
| 			//	Rational approximation for upper region.
 | |
| 			$q = sqrt(-2 * log(1 - $p));
 | |
| 			return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
 | |
| 					 (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
 | |
| 		}
 | |
| 		//	If 0 < p < 1, return a null value
 | |
| 		return PHPExcel_Calculation_Functions::NULL();
 | |
| 	}	//	function _inverse_ncdf()
 | |
| 
 | |
| 
 | |
| 	private static function _inverse_ncdf2($prob) {
 | |
| 		//	Approximation of inverse standard normal CDF developed by
 | |
| 		//	B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.
 | |
| 
 | |
| 		$a1 = 2.50662823884;
 | |
| 		$a2 = -18.61500062529;
 | |
| 		$a3 = 41.39119773534;
 | |
| 		$a4 = -25.44106049637;
 | |
| 
 | |
| 		$b1 = -8.4735109309;
 | |
| 		$b2 = 23.08336743743;
 | |
| 		$b3 = -21.06224101826;
 | |
| 		$b4 = 3.13082909833;
 | |
| 
 | |
| 		$c1 = 0.337475482272615;
 | |
| 		$c2 = 0.976169019091719;
 | |
| 		$c3 = 0.160797971491821;
 | |
| 		$c4 = 2.76438810333863E-02;
 | |
| 		$c5 = 3.8405729373609E-03;
 | |
| 		$c6 = 3.951896511919E-04;
 | |
| 		$c7 = 3.21767881768E-05;
 | |
| 		$c8 = 2.888167364E-07;
 | |
| 		$c9 = 3.960315187E-07;
 | |
| 
 | |
| 		$y = $prob - 0.5;
 | |
| 		if (abs($y) < 0.42) {
 | |
| 			$z = ($y * $y);
 | |
| 			$z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);
 | |
| 		} else {
 | |
| 			if ($y > 0) {
 | |
| 				$z = log(-log(1 - $prob));
 | |
| 			} else {
 | |
| 				$z = log(-log($prob));
 | |
| 			}
 | |
| 			$z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));
 | |
| 			if ($y < 0) {
 | |
| 				$z = -$z;
 | |
| 			}
 | |
| 		}
 | |
| 		return $z;
 | |
| 	}	//	function _inverse_ncdf2()
 | |
| 
 | |
| 
 | |
| 	private static function _inverse_ncdf3($p) {
 | |
| 		//	ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.
 | |
| 		//	Produces the normal deviate Z corresponding to a given lower
 | |
| 		//	tail area of P; Z is accurate to about 1 part in 10**16.
 | |
| 		//
 | |
| 		//	This is a PHP version of the original FORTRAN code that can
 | |
| 		//	be found at http://lib.stat.cmu.edu/apstat/
 | |
| 		$split1 = 0.425;
 | |
| 		$split2 = 5;
 | |
| 		$const1 = 0.180625;
 | |
| 		$const2 = 1.6;
 | |
| 
 | |
| 		//	coefficients for p close to 0.5
 | |
| 		$a0 = 3.3871328727963666080;
 | |
| 		$a1 = 1.3314166789178437745E+2;
 | |
| 		$a2 = 1.9715909503065514427E+3;
 | |
| 		$a3 = 1.3731693765509461125E+4;
 | |
| 		$a4 = 4.5921953931549871457E+4;
 | |
| 		$a5 = 6.7265770927008700853E+4;
 | |
| 		$a6 = 3.3430575583588128105E+4;
 | |
| 		$a7 = 2.5090809287301226727E+3;
 | |
| 
 | |
| 		$b1 = 4.2313330701600911252E+1;
 | |
| 		$b2 = 6.8718700749205790830E+2;
 | |
| 		$b3 = 5.3941960214247511077E+3;
 | |
| 		$b4 = 2.1213794301586595867E+4;
 | |
| 		$b5 = 3.9307895800092710610E+4;
 | |
| 		$b6 = 2.8729085735721942674E+4;
 | |
| 		$b7 = 5.2264952788528545610E+3;
 | |
| 
 | |
| 		//	coefficients for p not close to 0, 0.5 or 1.
 | |
| 		$c0 = 1.42343711074968357734;
 | |
| 		$c1 = 4.63033784615654529590;
 | |
| 		$c2 = 5.76949722146069140550;
 | |
| 		$c3 = 3.64784832476320460504;
 | |
| 		$c4 = 1.27045825245236838258;
 | |
| 		$c5 = 2.41780725177450611770E-1;
 | |
| 		$c6 = 2.27238449892691845833E-2;
 | |
| 		$c7 = 7.74545014278341407640E-4;
 | |
| 
 | |
| 		$d1 = 2.05319162663775882187;
 | |
| 		$d2 = 1.67638483018380384940;
 | |
| 		$d3 = 6.89767334985100004550E-1;
 | |
| 		$d4 = 1.48103976427480074590E-1;
 | |
| 		$d5 = 1.51986665636164571966E-2;
 | |
| 		$d6 = 5.47593808499534494600E-4;
 | |
| 		$d7 = 1.05075007164441684324E-9;
 | |
| 
 | |
| 		//	coefficients for p near 0 or 1.
 | |
| 		$e0 = 6.65790464350110377720;
 | |
| 		$e1 = 5.46378491116411436990;
 | |
| 		$e2 = 1.78482653991729133580;
 | |
| 		$e3 = 2.96560571828504891230E-1;
 | |
| 		$e4 = 2.65321895265761230930E-2;
 | |
| 		$e5 = 1.24266094738807843860E-3;
 | |
| 		$e6 = 2.71155556874348757815E-5;
 | |
| 		$e7 = 2.01033439929228813265E-7;
 | |
| 
 | |
| 		$f1 = 5.99832206555887937690E-1;
 | |
| 		$f2 = 1.36929880922735805310E-1;
 | |
| 		$f3 = 1.48753612908506148525E-2;
 | |
| 		$f4 = 7.86869131145613259100E-4;
 | |
| 		$f5 = 1.84631831751005468180E-5;
 | |
| 		$f6 = 1.42151175831644588870E-7;
 | |
| 		$f7 = 2.04426310338993978564E-15;
 | |
| 
 | |
| 		$q = $p - 0.5;
 | |
| 
 | |
| 		//	computation for p close to 0.5
 | |
| 		if (abs($q) <= split1) {
 | |
| 			$R = $const1 - $q * $q;
 | |
| 			$z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /
 | |
| 					  ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);
 | |
| 		} else {
 | |
| 			if ($q < 0) {
 | |
| 				$R = $p;
 | |
| 			} else {
 | |
| 				$R = 1 - $p;
 | |
| 			}
 | |
| 			$R = pow(-log($R),2);
 | |
| 
 | |
| 			//	computation for p not close to 0, 0.5 or 1.
 | |
| 			If ($R <= $split2) {
 | |
| 				$R = $R - $const2;
 | |
| 				$z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /
 | |
| 					 ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);
 | |
| 			} else {
 | |
| 			//	computation for p near 0 or 1.
 | |
| 				$R = $R - $split2;
 | |
| 				$z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /
 | |
| 					 ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);
 | |
| 			}
 | |
| 			if ($q < 0) {
 | |
| 				$z = -$z;
 | |
| 			}
 | |
| 		}
 | |
| 		return $z;
 | |
| 	}	//	function _inverse_ncdf3()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * AVEDEV
 | |
| 	 *
 | |
| 	 * Returns the average of the absolute deviations of data points from their mean.
 | |
| 	 * AVEDEV is a measure of the variability in a data set.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		AVEDEV(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function AVEDEV() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aMean = self::AVERAGE($aArgs);
 | |
| 		if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
 | |
| 			$aCount = 0;
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 | |
| 					$arg = (integer) $arg;
 | |
| 				}
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					if (is_null($returnValue)) {
 | |
| 						$returnValue = abs($arg - $aMean);
 | |
| 					} else {
 | |
| 						$returnValue += abs($arg - $aMean);
 | |
| 					}
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if ($aCount == 0) {
 | |
| 				return PHPExcel_Calculation_Functions::DIV0();
 | |
| 			}
 | |
| 			return $returnValue / $aCount;
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::NaN();
 | |
| 	}	//	function AVEDEV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * AVERAGE
 | |
| 	 *
 | |
| 	 * Returns the average (arithmetic mean) of the arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		AVERAGE(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function AVERAGE() {
 | |
| 		$returnValue = $aCount = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
 | |
| 			if ((is_bool($arg)) &&
 | |
| 				((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 | |
| 				$arg = (integer) $arg;
 | |
| 			}
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				if (is_null($returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				} else {
 | |
| 					$returnValue += $arg;
 | |
| 				}
 | |
| 				++$aCount;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 0) {
 | |
| 			return $returnValue / $aCount;
 | |
| 		} else {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 	}	//	function AVERAGE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * AVERAGEA
 | |
| 	 *
 | |
| 	 * Returns the average of its arguments, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		AVERAGEA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function AVERAGEA() {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aCount = 0;
 | |
| 		// Loop through arguments
 | |
| 		foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
 | |
| 			if ((is_bool($arg)) &&
 | |
| 				(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 			} else {
 | |
| 				if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 | |
| 					if (is_bool($arg)) {
 | |
| 						$arg = (integer) $arg;
 | |
| 					} elseif (is_string($arg)) {
 | |
| 						$arg = 0;
 | |
| 					}
 | |
| 					if (is_null($returnValue)) {
 | |
| 						$returnValue = $arg;
 | |
| 					} else {
 | |
| 						$returnValue += $arg;
 | |
| 					}
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 0) {
 | |
| 			return $returnValue / $aCount;
 | |
| 		} else {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 	}	//	function AVERAGEA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * AVERAGEIF
 | |
| 	 *
 | |
| 	 * Returns the average value from a range of cells that contain numbers within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		AVERAGEIF(value1[,value2[, ...]],condition)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Mathematical and Trigonometric Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	string		$condition		The criteria that defines which cells will be checked.
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function AVERAGEIF($aArgs,$condition,$averageArgs = array()) {
 | |
| 		// Return value
 | |
| 		$returnValue = 0;
 | |
| 
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 | |
| 		$averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs);
 | |
| 		if (empty($averageArgs)) {
 | |
| 			$averageArgs = $aArgs;
 | |
| 		}
 | |
| 		$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);
 | |
| 		// Loop through arguments
 | |
| 		$aCount = 0;
 | |
| 		foreach ($aArgs as $key => $arg) {
 | |
| 			if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }
 | |
| 			$testCondition = '='.$arg.$condition;
 | |
| 			if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 | |
| 				if ((is_null($returnValue)) || ($arg > $returnValue)) {
 | |
| 					$returnValue += $arg;
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 0) {
 | |
| 			return $returnValue / $aCount;
 | |
| 		} else {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 	}	//	function AVERAGEIF()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * BETADIST
 | |
| 	 *
 | |
| 	 * Returns the beta distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$value			Value at which you want to evaluate the distribution
 | |
| 	 * @param	float		$alpha			Parameter to the distribution
 | |
| 	 * @param	float		$beta			Parameter to the distribution
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function BETADIST($value,$alpha,$beta,$rMin=0,$rMax=1) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$alpha	= PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 | |
| 		$beta	= PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 | |
| 		$rMin	= PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
 | |
| 		$rMax	= PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
 | |
| 			if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ($rMin > $rMax) {
 | |
| 				$tmp = $rMin;
 | |
| 				$rMin = $rMax;
 | |
| 				$rMax = $tmp;
 | |
| 			}
 | |
| 			$value -= $rMin;
 | |
| 			$value /= ($rMax - $rMin);
 | |
| 			return self::_incompleteBeta($value,$alpha,$beta);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function BETADIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * BETAINV
 | |
| 	 *
 | |
| 	 * Returns the inverse of the beta distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$probability	Probability at which you want to evaluate the distribution
 | |
| 	 * @param	float		$alpha			Parameter to the distribution
 | |
| 	 * @param	float		$beta			Parameter to the distribution
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function BETAINV($probability,$alpha,$beta,$rMin=0,$rMax=1) {
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$alpha			= PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 | |
| 		$beta			= PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 | |
| 		$rMin			= PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
 | |
| 		$rMax			= PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
 | |
| 
 | |
| 		if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
 | |
| 			if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ($rMin > $rMax) {
 | |
| 				$tmp = $rMin;
 | |
| 				$rMin = $rMax;
 | |
| 				$rMax = $tmp;
 | |
| 			}
 | |
| 			$a = 0;
 | |
| 			$b = 2;
 | |
| 
 | |
| 			$i = 0;
 | |
| 			while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 | |
| 				$guess = ($a + $b) / 2;
 | |
| 				$result = self::BETADIST($guess, $alpha, $beta);
 | |
| 				if (($result == $probability) || ($result == 0)) {
 | |
| 					$b = $a;
 | |
| 				} elseif ($result > $probability) {
 | |
| 					$b = $guess;
 | |
| 				} else {
 | |
| 					$a = $guess;
 | |
| 				}
 | |
| 			}
 | |
| 			if ($i == MAX_ITERATIONS) {
 | |
| 				return PHPExcel_Calculation_Functions::NA();
 | |
| 			}
 | |
| 			return round($rMin + $guess * ($rMax - $rMin),12);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function BETAINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * BINOMDIST
 | |
| 	 *
 | |
| 	 * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with
 | |
| 	 *		a fixed number of tests or trials, when the outcomes of any trial are only success or failure,
 | |
| 	 *		when trials are independent, and when the probability of success is constant throughout the
 | |
| 	 *		experiment. For example, BINOMDIST can calculate the probability that two of the next three
 | |
| 	 *		babies born are male.
 | |
| 	 *
 | |
| 	 * @param	float		$value			Number of successes in trials
 | |
| 	 * @param	float		$trials			Number of trials
 | |
| 	 * @param	float		$probability	Probability of success on each trial
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 * @todo	Cumulative distribution function
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function BINOMDIST($value, $trials, $probability, $cumulative) {
 | |
| 		$value			= floor(PHPExcel_Calculation_Functions::flattenSingleValue($value));
 | |
| 		$trials			= floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {
 | |
| 			if (($value < 0) || ($value > $trials)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($probability < 0) || ($probability > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 | |
| 				if ($cumulative) {
 | |
| 					$summer = 0;
 | |
| 					for ($i = 0; $i <= $value; ++$i) {
 | |
| 						$summer += PHPExcel_Calculation_MathTrig::COMBIN($trials,$i) * pow($probability,$i) * pow(1 - $probability,$trials - $i);
 | |
| 					}
 | |
| 					return $summer;
 | |
| 				} else {
 | |
| 					return PHPExcel_Calculation_MathTrig::COMBIN($trials,$value) * pow($probability,$value) * pow(1 - $probability,$trials - $value) ;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function BINOMDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * CHIDIST
 | |
| 	 *
 | |
| 	 * Returns the one-tailed probability of the chi-squared distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$value			Value for the function
 | |
| 	 * @param	float		$degrees		degrees of freedom
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function CHIDIST($value, $degrees) {
 | |
| 		$value		= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$degrees	= floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($degrees))) {
 | |
| 			if ($degrees < 1) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ($value < 0) {
 | |
| 				if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
 | |
| 					return 1;
 | |
| 				}
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return 1 - (self::_incompleteGamma($degrees/2,$value/2) / self::_gamma($degrees/2));
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function CHIDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * CHIINV
 | |
| 	 *
 | |
| 	 * Returns the one-tailed probability of the chi-squared distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$probability	Probability for the function
 | |
| 	 * @param	float		$degrees		degrees of freedom
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function CHIINV($probability, $degrees) {
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$degrees		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 | |
| 
 | |
| 		if ((is_numeric($probability)) && (is_numeric($degrees))) {
 | |
| 
 | |
| 			$xLo = 100;
 | |
| 			$xHi = 0;
 | |
| 
 | |
| 			$x = $xNew = 1;
 | |
| 			$dx	= 1;
 | |
| 			$i = 0;
 | |
| 
 | |
| 			while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 | |
| 				// Apply Newton-Raphson step
 | |
| 				$result = self::CHIDIST($x, $degrees);
 | |
| 				$error = $result - $probability;
 | |
| 				if ($error == 0.0) {
 | |
| 					$dx = 0;
 | |
| 				} elseif ($error < 0.0) {
 | |
| 					$xLo = $x;
 | |
| 				} else {
 | |
| 					$xHi = $x;
 | |
| 				}
 | |
| 				// Avoid division by zero
 | |
| 				if ($result != 0.0) {
 | |
| 					$dx = $error / $result;
 | |
| 					$xNew = $x - $dx;
 | |
| 				}
 | |
| 				// If the NR fails to converge (which for example may be the
 | |
| 				// case if the initial guess is too rough) we apply a bisection
 | |
| 				// step to determine a more narrow interval around the root.
 | |
| 				if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
 | |
| 					$xNew = ($xLo + $xHi) / 2;
 | |
| 					$dx = $xNew - $x;
 | |
| 				}
 | |
| 				$x = $xNew;
 | |
| 			}
 | |
| 			if ($i == MAX_ITERATIONS) {
 | |
| 				return PHPExcel_Calculation_Functions::NA();
 | |
| 			}
 | |
| 			return round($x,12);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function CHIINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * CONFIDENCE
 | |
| 	 *
 | |
| 	 * Returns the confidence interval for a population mean
 | |
| 	 *
 | |
| 	 * @param	float		$alpha
 | |
| 	 * @param	float		$stdDev		Standard Deviation
 | |
| 	 * @param	float		$size
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function CONFIDENCE($alpha,$stdDev,$size) {
 | |
| 		$alpha	= PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 | |
| 		$stdDev	= PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 | |
| 		$size	= floor(PHPExcel_Calculation_Functions::flattenSingleValue($size));
 | |
| 
 | |
| 		if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {
 | |
| 			if (($alpha <= 0) || ($alpha >= 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($stdDev <= 0) || ($size < 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function CONFIDENCE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * CORREL
 | |
| 	 *
 | |
| 	 * Returns covariance, the average of the products of deviations for each data point pair.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function CORREL($yValues,$xValues=null) {
 | |
| 		if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getCorrelation();
 | |
| 	}	//	function CORREL()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * COUNT
 | |
| 	 *
 | |
| 	 * Counts the number of cells that contain numbers within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		COUNT(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	int
 | |
| 	 */
 | |
| 	public static function COUNT() {
 | |
| 		// Return value
 | |
| 		$returnValue = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 		foreach ($aArgs as $k => $arg) {
 | |
| 			if ((is_bool($arg)) &&
 | |
| 				((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 | |
| 				$arg = (integer) $arg;
 | |
| 			}
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				++$returnValue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function COUNT()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * COUNTA
 | |
| 	 *
 | |
| 	 * Counts the number of cells that are not empty within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		COUNTA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	int
 | |
| 	 */
 | |
| 	public static function COUNTA() {
 | |
| 		// Return value
 | |
| 		$returnValue = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric, boolean or string value?
 | |
| 			if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 | |
| 				++$returnValue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function COUNTA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * COUNTBLANK
 | |
| 	 *
 | |
| 	 * Counts the number of empty cells within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		COUNTBLANK(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	int
 | |
| 	 */
 | |
| 	public static function COUNTBLANK() {
 | |
| 		// Return value
 | |
| 		$returnValue = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a blank cell?
 | |
| 			if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) {
 | |
| 				++$returnValue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function COUNTBLANK()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * COUNTIF
 | |
| 	 *
 | |
| 	 * Counts the number of cells that contain numbers within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		COUNTIF(value1[,value2[, ...]],condition)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	string		$condition		The criteria that defines which cells will be counted.
 | |
| 	 * @return	int
 | |
| 	 */
 | |
| 	public static function COUNTIF($aArgs,$condition) {
 | |
| 		// Return value
 | |
| 		$returnValue = 0;
 | |
| 
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 | |
| 		$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);
 | |
| 		// Loop through arguments
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }
 | |
| 			$testCondition = '='.$arg.$condition;
 | |
| 			if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 | |
| 				// Is it a value within our criteria
 | |
| 				++$returnValue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function COUNTIF()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * COVAR
 | |
| 	 *
 | |
| 	 * Returns covariance, the average of the products of deviations for each data point pair.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function COVAR($yValues,$xValues) {
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getCovariance();
 | |
| 	}	//	function COVAR()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * CRITBINOM
 | |
| 	 *
 | |
| 	 * Returns the smallest value for which the cumulative binomial distribution is greater
 | |
| 	 *		than or equal to a criterion value
 | |
| 	 *
 | |
| 	 * See http://support.microsoft.com/kb/828117/ for details of the algorithm used
 | |
| 	 *
 | |
| 	 * @param	float		$trials			number of Bernoulli trials
 | |
| 	 * @param	float		$probability	probability of a success on each trial
 | |
| 	 * @param	float		$alpha			criterion value
 | |
| 	 * @return	int
 | |
| 	 *
 | |
| 	 * @todo	Warning. This implementation differs from the algorithm detailed on the MS
 | |
| 	 *			web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess
 | |
| 	 *			This eliminates a potential endless loop error, but may have an adverse affect on the
 | |
| 	 *			accuracy of the function (although all my tests have so far returned correct results).
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function CRITBINOM($trials, $probability, $alpha) {
 | |
| 		$trials			= floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$alpha			= PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 | |
| 
 | |
| 		if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {
 | |
| 			if ($trials < 0) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($probability < 0) || ($probability > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($alpha < 0) || ($alpha > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ($alpha <= 0.5) {
 | |
| 				$t = sqrt(log(1 / ($alpha * $alpha)));
 | |
| 				$trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));
 | |
| 			} else {
 | |
| 				$t = sqrt(log(1 / pow(1 - $alpha,2)));
 | |
| 				$trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);
 | |
| 			}
 | |
| 			$Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));
 | |
| 			if ($Guess < 0) {
 | |
| 				$Guess = 0;
 | |
| 			} elseif ($Guess > $trials) {
 | |
| 				$Guess = $trials;
 | |
| 			}
 | |
| 
 | |
| 			$TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;
 | |
| 			$EssentiallyZero = 10e-12;
 | |
| 
 | |
| 			$m = floor($trials * $probability);
 | |
| 			++$TotalUnscaledProbability;
 | |
| 			if ($m == $Guess) { ++$UnscaledPGuess; }
 | |
| 			if ($m <= $Guess) { ++$UnscaledCumPGuess; }
 | |
| 
 | |
| 			$PreviousValue = 1;
 | |
| 			$Done = False;
 | |
| 			$k = $m + 1;
 | |
| 			while ((!$Done) && ($k <= $trials)) {
 | |
| 				$CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));
 | |
| 				$TotalUnscaledProbability += $CurrentValue;
 | |
| 				if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; }
 | |
| 				if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; }
 | |
| 				if ($CurrentValue <= $EssentiallyZero) { $Done = True; }
 | |
| 				$PreviousValue = $CurrentValue;
 | |
| 				++$k;
 | |
| 			}
 | |
| 
 | |
| 			$PreviousValue = 1;
 | |
| 			$Done = False;
 | |
| 			$k = $m - 1;
 | |
| 			while ((!$Done) && ($k >= 0)) {
 | |
| 				$CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);
 | |
| 				$TotalUnscaledProbability += $CurrentValue;
 | |
| 				if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; }
 | |
| 				if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; }
 | |
| 				if ($CurrentValue <= $EssentiallyZero) { $Done = True; }
 | |
| 				$PreviousValue = $CurrentValue;
 | |
| 				--$k;
 | |
| 			}
 | |
| 
 | |
| 			$PGuess = $UnscaledPGuess / $TotalUnscaledProbability;
 | |
| 			$CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;
 | |
| 
 | |
| //			$CumPGuessMinus1 = $CumPGuess - $PGuess;
 | |
| 			$CumPGuessMinus1 = $CumPGuess - 1;
 | |
| 
 | |
| 			while (True) {
 | |
| 				if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {
 | |
| 					return $Guess;
 | |
| 				} elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {
 | |
| 					$PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);
 | |
| 					$CumPGuessMinus1 = $CumPGuess;
 | |
| 					$CumPGuess = $CumPGuess + $PGuessPlus1;
 | |
| 					$PGuess = $PGuessPlus1;
 | |
| 					++$Guess;
 | |
| 				} elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {
 | |
| 					$PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;
 | |
| 					$CumPGuess = $CumPGuessMinus1;
 | |
| 					$CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;
 | |
| 					$PGuess = $PGuessMinus1;
 | |
| 					--$Guess;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function CRITBINOM()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * DEVSQ
 | |
| 	 *
 | |
| 	 * Returns the sum of squares of deviations of data points from their sample mean.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		DEVSQ(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function DEVSQ() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aMean = self::AVERAGE($aArgs);
 | |
| 		if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
 | |
| 			$aCount = -1;
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 | |
| 					$arg = (integer) $arg;
 | |
| 				}
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					if (is_null($returnValue)) {
 | |
| 						$returnValue = pow(($arg - $aMean),2);
 | |
| 					} else {
 | |
| 						$returnValue += pow(($arg - $aMean),2);
 | |
| 					}
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if (is_null($returnValue)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			} else {
 | |
| 				return $returnValue;
 | |
| 			}
 | |
| 		}
 | |
| 		return self::NA();
 | |
| 	}	//	function DEVSQ()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * EXPONDIST
 | |
| 	 *
 | |
| 	 *	Returns the exponential distribution. Use EXPONDIST to model the time between events,
 | |
| 	 *		such as how long an automated bank teller takes to deliver cash. For example, you can
 | |
| 	 *		use EXPONDIST to determine the probability that the process takes at most 1 minute.
 | |
| 	 *
 | |
| 	 * @param	float		$value			Value of the function
 | |
| 	 * @param	float		$lambda			The parameter value
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function EXPONDIST($value, $lambda, $cumulative) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$lambda	= PHPExcel_Calculation_Functions::flattenSingleValue($lambda);
 | |
| 		$cumulative	= PHPExcel_Calculation_Functions::flattenSingleValue($cumulative);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($lambda))) {
 | |
| 			if (($value < 0) || ($lambda < 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 | |
| 				if ($cumulative) {
 | |
| 					return 1 - exp(0-$value*$lambda);
 | |
| 				} else {
 | |
| 					return $lambda * exp(0-$value*$lambda);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function EXPONDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * FISHER
 | |
| 	 *
 | |
| 	 * Returns the Fisher transformation at x. This transformation produces a function that
 | |
| 	 *		is normally distributed rather than skewed. Use this function to perform hypothesis
 | |
| 	 *		testing on the correlation coefficient.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function FISHER($value) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 
 | |
| 		if (is_numeric($value)) {
 | |
| 			if (($value <= -1) || ($value >= 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return 0.5 * log((1+$value)/(1-$value));
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function FISHER()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * FISHERINV
 | |
| 	 *
 | |
| 	 * Returns the inverse of the Fisher transformation. Use this transformation when
 | |
| 	 *		analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
 | |
| 	 *		FISHERINV(y) = x.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function FISHERINV($value) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 
 | |
| 		if (is_numeric($value)) {
 | |
| 			return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function FISHERINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * FORECAST
 | |
| 	 *
 | |
| 	 * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.
 | |
| 	 *
 | |
| 	 * @param	float				Value of X for which we want to find Y
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function FORECAST($xValue,$yValues,$xValues) {
 | |
| 		$xValue	= PHPExcel_Calculation_Functions::flattenSingleValue($xValue);
 | |
| 		if (!is_numeric($xValue)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getValueOfYForX($xValue);
 | |
| 	}	//	function FORECAST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * GAMMADIST
 | |
| 	 *
 | |
| 	 * Returns the gamma distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$value			Value at which you want to evaluate the distribution
 | |
| 	 * @param	float		$a				Parameter to the distribution
 | |
| 	 * @param	float		$b				Parameter to the distribution
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function GAMMADIST($value,$a,$b,$cumulative) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$a		= PHPExcel_Calculation_Functions::flattenSingleValue($a);
 | |
| 		$b		= PHPExcel_Calculation_Functions::flattenSingleValue($b);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {
 | |
| 			if (($value < 0) || ($a <= 0) || ($b <= 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 | |
| 				if ($cumulative) {
 | |
| 					return self::_incompleteGamma($a,$value / $b) / self::_gamma($a);
 | |
| 				} else {
 | |
| 					return (1 / (pow($b,$a) * self::_gamma($a))) * pow($value,$a-1) * exp(0-($value / $b));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function GAMMADIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * GAMMAINV
 | |
| 	 *
 | |
| 	 * Returns the inverse of the beta distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$probability	Probability at which you want to evaluate the distribution
 | |
| 	 * @param	float		$alpha			Parameter to the distribution
 | |
| 	 * @param	float		$beta			Parameter to the distribution
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function GAMMAINV($probability,$alpha,$beta) {
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$alpha			= PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 | |
| 		$beta			= PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 | |
| 
 | |
| 		if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {
 | |
| 			if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 
 | |
| 			$xLo = 0;
 | |
| 			$xHi = $alpha * $beta * 5;
 | |
| 
 | |
| 			$x = $xNew = 1;
 | |
| 			$error = $pdf = 0;
 | |
| 			$dx	= 1024;
 | |
| 			$i = 0;
 | |
| 
 | |
| 			while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 | |
| 				// Apply Newton-Raphson step
 | |
| 				$error = self::GAMMADIST($x, $alpha, $beta, True) - $probability;
 | |
| 				if ($error < 0.0) {
 | |
| 					$xLo = $x;
 | |
| 				} else {
 | |
| 					$xHi = $x;
 | |
| 				}
 | |
| 				$pdf = self::GAMMADIST($x, $alpha, $beta, False);
 | |
| 				// Avoid division by zero
 | |
| 				if ($pdf != 0.0) {
 | |
| 					$dx = $error / $pdf;
 | |
| 					$xNew = $x - $dx;
 | |
| 				}
 | |
| 				// If the NR fails to converge (which for example may be the
 | |
| 				// case if the initial guess is too rough) we apply a bisection
 | |
| 				// step to determine a more narrow interval around the root.
 | |
| 				if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
 | |
| 					$xNew = ($xLo + $xHi) / 2;
 | |
| 					$dx = $xNew - $x;
 | |
| 				}
 | |
| 				$x = $xNew;
 | |
| 			}
 | |
| 			if ($i == MAX_ITERATIONS) {
 | |
| 				return PHPExcel_Calculation_Functions::NA();
 | |
| 			}
 | |
| 			return $x;
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function GAMMAINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * GAMMALN
 | |
| 	 *
 | |
| 	 * Returns the natural logarithm of the gamma function.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function GAMMALN($value) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 
 | |
| 		if (is_numeric($value)) {
 | |
| 			if ($value <= 0) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return log(self::_gamma($value));
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function GAMMALN()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * GEOMEAN
 | |
| 	 *
 | |
| 	 * Returns the geometric mean of an array or range of positive data. For example, you
 | |
| 	 *		can use GEOMEAN to calculate average growth rate given compound interest with
 | |
| 	 *		variable rates.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		GEOMEAN(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function GEOMEAN() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		$aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs);
 | |
| 		if (is_numeric($aMean) && ($aMean > 0)) {
 | |
| 			$aCount = self::COUNT($aArgs) ;
 | |
| 			if (self::MIN($aArgs) > 0) {
 | |
| 				return pow($aMean, (1 / $aCount));
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::NaN();
 | |
| 	}	//	GEOMEAN()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * GROWTH
 | |
| 	 *
 | |
| 	 * Returns values along a predicted emponential trend
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @param	array of mixed		Values of X for which we want to find Y
 | |
| 	 * @param	boolean				A logical value specifying whether to force the intersect to equal 0.
 | |
| 	 * @return	array of float
 | |
| 	 */
 | |
| 	public static function GROWTH($yValues,$xValues=array(),$newValues=array(),$const=True) {
 | |
| 		$yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
 | |
| 		$xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
 | |
| 		$newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
 | |
| 		$const	= (is_null($const))	? True :	(boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 | |
| 
 | |
| 		$bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const);
 | |
| 		if (empty($newValues)) {
 | |
| 			$newValues = $bestFitExponential->getXValues();
 | |
| 		}
 | |
| 
 | |
| 		$returnArray = array();
 | |
| 		foreach($newValues as $xValue) {
 | |
| 			$returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);
 | |
| 		}
 | |
| 
 | |
| 		return $returnArray;
 | |
| 	}	//	function GROWTH()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * HARMEAN
 | |
| 	 *
 | |
| 	 * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
 | |
| 	 *		arithmetic mean of reciprocals.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		HARMEAN(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function HARMEAN() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::NA();
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		if (self::MIN($aArgs) < 0) {
 | |
| 			return PHPExcel_Calculation_Functions::NaN();
 | |
| 		}
 | |
| 		$aCount = 0;
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				if ($arg <= 0) {
 | |
| 					return PHPExcel_Calculation_Functions::NaN();
 | |
| 				}
 | |
| 				if (is_null($returnValue)) {
 | |
| 					$returnValue = (1 / $arg);
 | |
| 				} else {
 | |
| 					$returnValue += (1 / $arg);
 | |
| 				}
 | |
| 				++$aCount;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 0) {
 | |
| 			return 1 / ($returnValue / $aCount);
 | |
| 		} else {
 | |
| 			return $returnValue;
 | |
| 		}
 | |
| 	}	//	function HARMEAN()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * HYPGEOMDIST
 | |
| 	 *
 | |
| 	 * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of
 | |
| 	 * sample successes, given the sample size, population successes, and population size.
 | |
| 	 *
 | |
| 	 * @param	float		$sampleSuccesses		Number of successes in the sample
 | |
| 	 * @param	float		$sampleNumber			Size of the sample
 | |
| 	 * @param	float		$populationSuccesses	Number of successes in the population
 | |
| 	 * @param	float		$populationNumber		Population size
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) {
 | |
| 		$sampleSuccesses		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses));
 | |
| 		$sampleNumber			= floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber));
 | |
| 		$populationSuccesses	= floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses));
 | |
| 		$populationNumber		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber));
 | |
| 
 | |
| 		if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {
 | |
| 			if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses,$sampleSuccesses) *
 | |
| 				   PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses,$sampleNumber - $sampleSuccesses) /
 | |
| 				   PHPExcel_Calculation_MathTrig::COMBIN($populationNumber,$sampleNumber);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function HYPGEOMDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * INTERCEPT
 | |
| 	 *
 | |
| 	 * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function INTERCEPT($yValues,$xValues) {
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getIntersect();
 | |
| 	}	//	function INTERCEPT()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * KURT
 | |
| 	 *
 | |
| 	 * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
 | |
| 	 * or flatness of a distribution compared with the normal distribution. Positive
 | |
| 	 * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
 | |
| 	 * relatively flat distribution.
 | |
| 	 *
 | |
| 	 * @param	array	Data Series
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function KURT() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 		$mean = self::AVERAGE($aArgs);
 | |
| 		$stdDev = self::STDEV($aArgs);
 | |
| 
 | |
| 		if ($stdDev > 0) {
 | |
| 			$count = $summer = 0;
 | |
| 			// Loop through arguments
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 				} else {
 | |
| 					// Is it a numeric value?
 | |
| 					if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 						$summer += pow((($arg - $mean) / $stdDev),4) ;
 | |
| 						++$count;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if ($count > 3) {
 | |
| 				return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1,2) / (($count-2) * ($count-3)));
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::DIV0();
 | |
| 	}	//	function KURT()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * LARGE
 | |
| 	 *
 | |
| 	 * Returns the nth largest value in a data set. You can use this function to
 | |
| 	 *		select a value based on its relative standing.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		LARGE(value1[,value2[, ...]],entry)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	int			$entry			Position (ordered from the largest) in the array or range of data to return
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function LARGE() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		// Calculate
 | |
| 		$entry = floor(array_pop($aArgs));
 | |
| 
 | |
| 		if ((is_numeric($entry)) && (!is_string($entry))) {
 | |
| 			$mArgs = array();
 | |
| 			foreach ($aArgs as $arg) {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					$mArgs[] = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 			$count = self::COUNT($mArgs);
 | |
| 			$entry = floor(--$entry);
 | |
| 			if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			rsort($mArgs);
 | |
| 			return $mArgs[$entry];
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function LARGE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * LINEST
 | |
| 	 *
 | |
| 	 * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,
 | |
| 	 *		and then returns an array that describes the line.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @param	boolean				A logical value specifying whether to force the intersect to equal 0.
 | |
| 	 * @param	boolean				A logical value specifying whether to return additional regression statistics.
 | |
| 	 * @return	array
 | |
| 	 */
 | |
| 	public static function LINEST($yValues,$xValues=null,$const=True,$stats=False) {
 | |
| 		$const	= (is_null($const))	? True :	(boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 | |
| 		$stats	= (is_null($stats))	? False :	(boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
 | |
| 		if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
 | |
| 
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const);
 | |
| 		if ($stats) {
 | |
| 			return array( array( $bestFitLinear->getSlope(),
 | |
| 						 		 $bestFitLinear->getSlopeSE(),
 | |
| 						 		 $bestFitLinear->getGoodnessOfFit(),
 | |
| 						 		 $bestFitLinear->getF(),
 | |
| 						 		 $bestFitLinear->getSSRegression(),
 | |
| 							   ),
 | |
| 						  array( $bestFitLinear->getIntersect(),
 | |
| 								 $bestFitLinear->getIntersectSE(),
 | |
| 								 $bestFitLinear->getStdevOfResiduals(),
 | |
| 								 $bestFitLinear->getDFResiduals(),
 | |
| 								 $bestFitLinear->getSSResiduals()
 | |
| 							   )
 | |
| 						);
 | |
| 		} else {
 | |
| 			return array( $bestFitLinear->getSlope(),
 | |
| 						  $bestFitLinear->getIntersect()
 | |
| 						);
 | |
| 		}
 | |
| 	}	//	function LINEST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * LOGEST
 | |
| 	 *
 | |
| 	 * Calculates an exponential curve that best fits the X and Y data series,
 | |
| 	 *		and then returns an array that describes the line.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @param	boolean				A logical value specifying whether to force the intersect to equal 0.
 | |
| 	 * @param	boolean				A logical value specifying whether to return additional regression statistics.
 | |
| 	 * @return	array
 | |
| 	 */
 | |
| 	public static function LOGEST($yValues,$xValues=null,$const=True,$stats=False) {
 | |
| 		$const	= (is_null($const))	? True :	(boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 | |
| 		$stats	= (is_null($stats))	? False :	(boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
 | |
| 		if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
 | |
| 
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		foreach($yValues as $value) {
 | |
| 			if ($value <= 0.0) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		$bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const);
 | |
| 		if ($stats) {
 | |
| 			return array( array( $bestFitExponential->getSlope(),
 | |
| 						 		 $bestFitExponential->getSlopeSE(),
 | |
| 						 		 $bestFitExponential->getGoodnessOfFit(),
 | |
| 						 		 $bestFitExponential->getF(),
 | |
| 						 		 $bestFitExponential->getSSRegression(),
 | |
| 							   ),
 | |
| 						  array( $bestFitExponential->getIntersect(),
 | |
| 								 $bestFitExponential->getIntersectSE(),
 | |
| 								 $bestFitExponential->getStdevOfResiduals(),
 | |
| 								 $bestFitExponential->getDFResiduals(),
 | |
| 								 $bestFitExponential->getSSResiduals()
 | |
| 							   )
 | |
| 						);
 | |
| 		} else {
 | |
| 			return array( $bestFitExponential->getSlope(),
 | |
| 						  $bestFitExponential->getIntersect()
 | |
| 						);
 | |
| 		}
 | |
| 	}	//	function LOGEST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * LOGINV
 | |
| 	 *
 | |
| 	 * Returns the inverse of the normal cumulative distribution
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 * @todo	Try implementing P J Acklam's refinement algorithm for greater
 | |
| 	 *			accuracy if I can get my head round the mathematics
 | |
| 	 *			(as described at) http://home.online.no/~pjacklam/notes/invnorm/
 | |
| 	 */
 | |
| 	public static function LOGINV($probability, $mean, $stdDev) {
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$mean			= PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 | |
| 		$stdDev			= PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 | |
| 
 | |
| 		if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 | |
| 			if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return exp($mean + $stdDev * self::NORMSINV($probability));
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function LOGINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * LOGNORMDIST
 | |
| 	 *
 | |
| 	 * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed
 | |
| 	 * with parameters mean and standard_dev.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function LOGNORMDIST($value, $mean, $stdDev) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$mean	= PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 | |
| 		$stdDev	= PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 | |
| 			if (($value <= 0) || ($stdDev <= 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return self::NORMSDIST((log($value) - $mean) / $stdDev);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function LOGNORMDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MAX
 | |
| 	 *
 | |
| 	 * MAX returns the value of the element of the values passed that has the highest value,
 | |
| 	 *		with negative numbers considered smaller than positive numbers.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MAX(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MAX() {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				if ((is_null($returnValue)) || ($arg > $returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if(is_null($returnValue)) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function MAX()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MAXA
 | |
| 	 *
 | |
| 	 * Returns the greatest value in a list of arguments, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MAXA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MAXA() {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 | |
| 				if (is_bool($arg)) {
 | |
| 					$arg = (integer) $arg;
 | |
| 				} elseif (is_string($arg)) {
 | |
| 					$arg = 0;
 | |
| 				}
 | |
| 				if ((is_null($returnValue)) || ($arg > $returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if(is_null($returnValue)) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function MAXA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MAXIF
 | |
| 	 *
 | |
| 	 * Counts the maximum value within a range of cells that contain numbers within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MAXIF(value1[,value2[, ...]],condition)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Mathematical and Trigonometric Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	string		$condition		The criteria that defines which cells will be checked.
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MAXIF($aArgs,$condition,$sumArgs = array()) {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 | |
| 		$sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
 | |
| 		if (empty($sumArgs)) {
 | |
| 			$sumArgs = $aArgs;
 | |
| 		}
 | |
| 		$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);
 | |
| 		// Loop through arguments
 | |
| 		foreach ($aArgs as $key => $arg) {
 | |
| 			if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }
 | |
| 			$testCondition = '='.$arg.$condition;
 | |
| 			if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 | |
| 				if ((is_null($returnValue)) || ($arg > $returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function MAXIF()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MEDIAN
 | |
| 	 *
 | |
| 	 * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MEDIAN(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MEDIAN() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::NaN();
 | |
| 
 | |
| 		$mArgs = array();
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				$mArgs[] = $arg;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		$mValueCount = count($mArgs);
 | |
| 		if ($mValueCount > 0) {
 | |
| 			sort($mArgs,SORT_NUMERIC);
 | |
| 			$mValueCount = $mValueCount / 2;
 | |
| 			if ($mValueCount == floor($mValueCount)) {
 | |
| 				$returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;
 | |
| 			} else {
 | |
| 				$mValueCount == floor($mValueCount);
 | |
| 				$returnValue = $mArgs[$mValueCount];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function MEDIAN()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MIN
 | |
| 	 *
 | |
| 	 * MIN returns the value of the element of the values passed that has the smallest value,
 | |
| 	 *		with negative numbers considered smaller than positive numbers.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MIN(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MIN() {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				if ((is_null($returnValue)) || ($arg < $returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if(is_null($returnValue)) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function MIN()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MINA
 | |
| 	 *
 | |
| 	 * Returns the smallest value in a list of arguments, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MINA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MINA() {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 | |
| 				if (is_bool($arg)) {
 | |
| 					$arg = (integer) $arg;
 | |
| 				} elseif (is_string($arg)) {
 | |
| 					$arg = 0;
 | |
| 				}
 | |
| 				if ((is_null($returnValue)) || ($arg < $returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if(is_null($returnValue)) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function MINA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MINIF
 | |
| 	 *
 | |
| 	 * Returns the minimum value within a range of cells that contain numbers within the list of arguments
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MINIF(value1[,value2[, ...]],condition)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Mathematical and Trigonometric Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	string		$condition		The criteria that defines which cells will be checked.
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MINIF($aArgs,$condition,$sumArgs = array()) {
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 | |
| 		$sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
 | |
| 		if (empty($sumArgs)) {
 | |
| 			$sumArgs = $aArgs;
 | |
| 		}
 | |
| 		$condition = PHPExcel_Calculation_Functions::_ifCondition($condition);
 | |
| 		// Loop through arguments
 | |
| 		foreach ($aArgs as $key => $arg) {
 | |
| 			if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); }
 | |
| 			$testCondition = '='.$arg.$condition;
 | |
| 			if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 | |
| 				if ((is_null($returnValue)) || ($arg < $returnValue)) {
 | |
| 					$returnValue = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function MINIF()
 | |
| 
 | |
| 
 | |
| 	//
 | |
| 	//	Special variant of array_count_values that isn't limited to strings and integers,
 | |
| 	//		but can work with floating point numbers as values
 | |
| 	//
 | |
| 	private static function _modeCalc($data) {
 | |
| 		$frequencyArray = array();
 | |
| 		foreach($data as $datum) {
 | |
| 			$found = False;
 | |
| 			foreach($frequencyArray as $key => $value) {
 | |
| 				if ((string) $value['value'] == (string) $datum) {
 | |
| 					++$frequencyArray[$key]['frequency'];
 | |
| 					$found = True;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!$found) {
 | |
| 				$frequencyArray[] = array('value'		=> $datum,
 | |
| 										  'frequency'	=>	1 );
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		foreach($frequencyArray as $key => $value) {
 | |
| 			$frequencyList[$key] = $value['frequency'];
 | |
| 			$valueList[$key] = $value['value'];
 | |
| 		}
 | |
| 		array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);
 | |
| 
 | |
| 		if ($frequencyArray[0]['frequency'] == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		}
 | |
| 		return $frequencyArray[0]['value'];
 | |
| 	}	//	function _modeCalc()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * MODE
 | |
| 	 *
 | |
| 	 * Returns the most frequently occurring, or repetitive, value in an array or range of data
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		MODE(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function MODE() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::NA();
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		$mArgs = array();
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				$mArgs[] = $arg;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!empty($mArgs)) {
 | |
| 			return self::_modeCalc($mArgs);
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		return $returnValue;
 | |
| 	}	//	function MODE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * NEGBINOMDIST
 | |
| 	 *
 | |
| 	 * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that
 | |
| 	 *		there will be number_f failures before the number_s-th success, when the constant
 | |
| 	 *		probability of a success is probability_s. This function is similar to the binomial
 | |
| 	 *		distribution, except that the number of successes is fixed, and the number of trials is
 | |
| 	 *		variable. Like the binomial, trials are assumed to be independent.
 | |
| 	 *
 | |
| 	 * @param	float		$failures		Number of Failures
 | |
| 	 * @param	float		$successes		Threshold number of Successes
 | |
| 	 * @param	float		$probability	Probability of success on each trial
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function NEGBINOMDIST($failures, $successes, $probability) {
 | |
| 		$failures		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures));
 | |
| 		$successes		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes));
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 
 | |
| 		if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {
 | |
| 			if (($failures < 0) || ($successes < 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (($probability < 0) || ($probability > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
 | |
| 				if (($failures + $successes - 1) <= 0) {
 | |
| 					return PHPExcel_Calculation_Functions::NaN();
 | |
| 				}
 | |
| 			}
 | |
| 			return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1,$successes - 1)) * (pow($probability,$successes)) * (pow(1 - $probability,$failures)) ;
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function NEGBINOMDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * NORMDIST
 | |
| 	 *
 | |
| 	 * Returns the normal distribution for the specified mean and standard deviation. This
 | |
| 	 * function has a very wide range of applications in statistics, including hypothesis
 | |
| 	 * testing.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @param	float		$mean		Mean Value
 | |
| 	 * @param	float		$stdDev		Standard Deviation
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function NORMDIST($value, $mean, $stdDev, $cumulative) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$mean	= PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 | |
| 		$stdDev	= PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 | |
| 			if ($stdDev < 0) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 | |
| 				if ($cumulative) {
 | |
| 					return 0.5 * (1 + PHPExcel_Calculation_Engineering::_erfVal(($value - $mean) / ($stdDev * sqrt(2))));
 | |
| 				} else {
 | |
| 					return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean,2) / (2 * ($stdDev * $stdDev))));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function NORMDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * NORMINV
 | |
| 	 *
 | |
| 	 * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @param	float		$mean		Mean Value
 | |
| 	 * @param	float		$stdDev		Standard Deviation
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function NORMINV($probability,$mean,$stdDev) {
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$mean			= PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 | |
| 		$stdDev			= PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 | |
| 
 | |
| 		if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 | |
| 			if (($probability < 0) || ($probability > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ($stdDev < 0) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return (self::_inverse_ncdf($probability) * $stdDev) + $mean;
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function NORMINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * NORMSDIST
 | |
| 	 *
 | |
| 	 * Returns the standard normal cumulative distribution function. The distribution has
 | |
| 	 * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
 | |
| 	 * table of standard normal curve areas.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function NORMSDIST($value) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 
 | |
| 		return self::NORMDIST($value, 0, 1, True);
 | |
| 	}	//	function NORMSDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * NORMSINV
 | |
| 	 *
 | |
| 	 * Returns the inverse of the standard normal cumulative distribution
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function NORMSINV($value) {
 | |
| 		return self::NORMINV($value, 0, 1);
 | |
| 	}	//	function NORMSINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * PERCENTILE
 | |
| 	 *
 | |
| 	 * Returns the nth percentile of values in a range..
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		PERCENTILE(value1[,value2[, ...]],entry)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	float		$entry			Percentile value in the range 0..1, inclusive.
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function PERCENTILE() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		// Calculate
 | |
| 		$entry = array_pop($aArgs);
 | |
| 
 | |
| 		if ((is_numeric($entry)) && (!is_string($entry))) {
 | |
| 			if (($entry < 0) || ($entry > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			$mArgs = array();
 | |
| 			foreach ($aArgs as $arg) {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					$mArgs[] = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 			$mValueCount = count($mArgs);
 | |
| 			if ($mValueCount > 0) {
 | |
| 				sort($mArgs);
 | |
| 				$count = self::COUNT($mArgs);
 | |
| 				$index = $entry * ($count-1);
 | |
| 				$iBase = floor($index);
 | |
| 				if ($index == $iBase) {
 | |
| 					return $mArgs[$index];
 | |
| 				} else {
 | |
| 					$iNext = $iBase + 1;
 | |
| 					$iProportion = $index - $iBase;
 | |
| 					return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function PERCENTILE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * PERCENTRANK
 | |
| 	 *
 | |
| 	 * Returns the rank of a value in a data set as a percentage of the data set.
 | |
| 	 *
 | |
| 	 * @param	array of number		An array of, or a reference to, a list of numbers.
 | |
| 	 * @param	number				The number whose rank you want to find.
 | |
| 	 * @param	number				The number of significant digits for the returned percentage value.
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function PERCENTRANK($valueSet,$value,$significance=3) {
 | |
| 		$valueSet	= PHPExcel_Calculation_Functions::flattenArray($valueSet);
 | |
| 		$value		= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$significance	= (is_null($significance))	? 3 :	(integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance);
 | |
| 
 | |
| 		foreach($valueSet as $key => $valueEntry) {
 | |
| 			if (!is_numeric($valueEntry)) {
 | |
| 				unset($valueSet[$key]);
 | |
| 			}
 | |
| 		}
 | |
| 		sort($valueSet,SORT_NUMERIC);
 | |
| 		$valueCount = count($valueSet);
 | |
| 		if ($valueCount == 0) {
 | |
| 			return PHPExcel_Calculation_Functions::NaN();
 | |
| 		}
 | |
| 
 | |
| 		$valueAdjustor = $valueCount - 1;
 | |
| 		if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		}
 | |
| 
 | |
| 		$pos = array_search($value,$valueSet);
 | |
| 		if ($pos === False) {
 | |
| 			$pos = 0;
 | |
| 			$testValue = $valueSet[0];
 | |
| 			while ($testValue < $value) {
 | |
| 				$testValue = $valueSet[++$pos];
 | |
| 			}
 | |
| 			--$pos;
 | |
| 			$pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));
 | |
| 		}
 | |
| 
 | |
| 		return round($pos / $valueAdjustor,$significance);
 | |
| 	}	//	function PERCENTRANK()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * PERMUT
 | |
| 	 *
 | |
| 	 * Returns the number of permutations for a given number of objects that can be
 | |
| 	 *		selected from number objects. A permutation is any set or subset of objects or
 | |
| 	 *		events where internal order is significant. Permutations are different from
 | |
| 	 *		combinations, for which the internal order is not significant. Use this function
 | |
| 	 *		for lottery-style probability calculations.
 | |
| 	 *
 | |
| 	 * @param	int		$numObjs	Number of different objects
 | |
| 	 * @param	int		$numInSet	Number of objects in each permutation
 | |
| 	 * @return	int		Number of permutations
 | |
| 	 */
 | |
| 	public static function PERMUT($numObjs,$numInSet) {
 | |
| 		$numObjs	= PHPExcel_Calculation_Functions::flattenSingleValue($numObjs);
 | |
| 		$numInSet	= PHPExcel_Calculation_Functions::flattenSingleValue($numInSet);
 | |
| 
 | |
| 		if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {
 | |
| 			$numInSet = floor($numInSet);
 | |
| 			if ($numObjs < $numInSet) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet));
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function PERMUT()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * POISSON
 | |
| 	 *
 | |
| 	 * Returns the Poisson distribution. A common application of the Poisson distribution
 | |
| 	 * is predicting the number of events over a specific time, such as the number of
 | |
| 	 * cars arriving at a toll plaza in 1 minute.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @param	float		$mean		Mean Value
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function POISSON($value, $mean, $cumulative) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$mean	= PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($mean))) {
 | |
| 			if (($value <= 0) || ($mean <= 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 | |
| 				if ($cumulative) {
 | |
| 					$summer = 0;
 | |
| 					for ($i = 0; $i <= floor($value); ++$i) {
 | |
| 						$summer += pow($mean,$i) / PHPExcel_Calculation_MathTrig::FACT($i);
 | |
| 					}
 | |
| 					return exp(0-$mean) * $summer;
 | |
| 				} else {
 | |
| 					return (exp(0-$mean) * pow($mean,$value)) / PHPExcel_Calculation_MathTrig::FACT($value);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function POISSON()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * QUARTILE
 | |
| 	 *
 | |
| 	 * Returns the quartile of a data set.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		QUARTILE(value1[,value2[, ...]],entry)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	int			$entry			Quartile value in the range 1..3, inclusive.
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function QUARTILE() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		// Calculate
 | |
| 		$entry = floor(array_pop($aArgs));
 | |
| 
 | |
| 		if ((is_numeric($entry)) && (!is_string($entry))) {
 | |
| 			$entry /= 4;
 | |
| 			if (($entry < 0) || ($entry > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return self::PERCENTILE($aArgs,$entry);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function QUARTILE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * RANK
 | |
| 	 *
 | |
| 	 * Returns the rank of a number in a list of numbers.
 | |
| 	 *
 | |
| 	 * @param	number				The number whose rank you want to find.
 | |
| 	 * @param	array of number		An array of, or a reference to, a list of numbers.
 | |
| 	 * @param	mixed				Order to sort the values in the value set
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function RANK($value,$valueSet,$order=0) {
 | |
| 		$value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);
 | |
| 		$order	= (is_null($order))	? 0 :	(integer) PHPExcel_Calculation_Functions::flattenSingleValue($order);
 | |
| 
 | |
| 		foreach($valueSet as $key => $valueEntry) {
 | |
| 			if (!is_numeric($valueEntry)) {
 | |
| 				unset($valueSet[$key]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if ($order == 0) {
 | |
| 			rsort($valueSet,SORT_NUMERIC);
 | |
| 		} else {
 | |
| 			sort($valueSet,SORT_NUMERIC);
 | |
| 		}
 | |
| 		$pos = array_search($value,$valueSet);
 | |
| 		if ($pos === False) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		}
 | |
| 
 | |
| 		return ++$pos;
 | |
| 	}	//	function RANK()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * RSQ
 | |
| 	 *
 | |
| 	 * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function RSQ($yValues,$xValues) {
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getGoodnessOfFit();
 | |
| 	}	//	function RSQ()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * SKEW
 | |
| 	 *
 | |
| 	 * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry
 | |
| 	 * of a distribution around its mean. Positive skewness indicates a distribution with an
 | |
| 	 * asymmetric tail extending toward more positive values. Negative skewness indicates a
 | |
| 	 * distribution with an asymmetric tail extending toward more negative values.
 | |
| 	 *
 | |
| 	 * @param	array	Data Series
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function SKEW() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 		$mean = self::AVERAGE($aArgs);
 | |
| 		$stdDev = self::STDEV($aArgs);
 | |
| 
 | |
| 		$count = $summer = 0;
 | |
| 		// Loop through arguments
 | |
| 		foreach ($aArgs as $k => $arg) {
 | |
| 			if ((is_bool($arg)) &&
 | |
| 				(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 			} else {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					$summer += pow((($arg - $mean) / $stdDev),3) ;
 | |
| 					++$count;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($count > 2) {
 | |
| 			return $summer * ($count / (($count-1) * ($count-2)));
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::DIV0();
 | |
| 	}	//	function SKEW()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * SLOPE
 | |
| 	 *
 | |
| 	 * Returns the slope of the linear regression line through data points in known_y's and known_x's.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function SLOPE($yValues,$xValues) {
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getSlope();
 | |
| 	}	//	function SLOPE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * SMALL
 | |
| 	 *
 | |
| 	 * Returns the nth smallest value in a data set. You can use this function to
 | |
| 	 *		select a value based on its relative standing.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		SMALL(value1[,value2[, ...]],entry)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	int			$entry			Position (ordered from the smallest) in the array or range of data to return
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function SMALL() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		// Calculate
 | |
| 		$entry = array_pop($aArgs);
 | |
| 
 | |
| 		if ((is_numeric($entry)) && (!is_string($entry))) {
 | |
| 			$mArgs = array();
 | |
| 			foreach ($aArgs as $arg) {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					$mArgs[] = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 			$count = self::COUNT($mArgs);
 | |
| 			$entry = floor(--$entry);
 | |
| 			if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			sort($mArgs);
 | |
| 			return $mArgs[$entry];
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function SMALL()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * STANDARDIZE
 | |
| 	 *
 | |
| 	 * Returns a normalized value from a distribution characterized by mean and standard_dev.
 | |
| 	 *
 | |
| 	 * @param	float	$value		Value to normalize
 | |
| 	 * @param	float	$mean		Mean Value
 | |
| 	 * @param	float	$stdDev		Standard Deviation
 | |
| 	 * @return	float	Standardized value
 | |
| 	 */
 | |
| 	public static function STANDARDIZE($value,$mean,$stdDev) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$mean	= PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 | |
| 		$stdDev	= PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 | |
| 			if ($stdDev <= 0) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			return ($value - $mean) / $stdDev ;
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function STANDARDIZE()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * STDEV
 | |
| 	 *
 | |
| 	 * Estimates standard deviation based on a sample. The standard deviation is a measure of how
 | |
| 	 *		widely values are dispersed from the average value (the mean).
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		STDEV(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function STDEV() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aMean = self::AVERAGE($aArgs);
 | |
| 		if (!is_null($aMean)) {
 | |
| 			$aCount = -1;
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 | |
| 					$arg = (integer) $arg;
 | |
| 				}
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					if (is_null($returnValue)) {
 | |
| 						$returnValue = pow(($arg - $aMean),2);
 | |
| 					} else {
 | |
| 						$returnValue += pow(($arg - $aMean),2);
 | |
| 					}
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if (($aCount > 0) && ($returnValue >= 0)) {
 | |
| 				return sqrt($returnValue / $aCount);
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::DIV0();
 | |
| 	}	//	function STDEV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * STDEVA
 | |
| 	 *
 | |
| 	 * Estimates standard deviation based on a sample, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		STDEVA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function STDEVA() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aMean = self::AVERAGEA($aArgs);
 | |
| 		if (!is_null($aMean)) {
 | |
| 			$aCount = -1;
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 				} else {
 | |
| 					// Is it a numeric value?
 | |
| 					if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 | |
| 						if (is_bool($arg)) {
 | |
| 							$arg = (integer) $arg;
 | |
| 						} elseif (is_string($arg)) {
 | |
| 							$arg = 0;
 | |
| 						}
 | |
| 						if (is_null($returnValue)) {
 | |
| 							$returnValue = pow(($arg - $aMean),2);
 | |
| 						} else {
 | |
| 							$returnValue += pow(($arg - $aMean),2);
 | |
| 						}
 | |
| 						++$aCount;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if (($aCount > 0) && ($returnValue >= 0)) {
 | |
| 				return sqrt($returnValue / $aCount);
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::DIV0();
 | |
| 	}	//	function STDEVA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * STDEVP
 | |
| 	 *
 | |
| 	 * Calculates standard deviation based on the entire population
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		STDEVP(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function STDEVP() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aMean = self::AVERAGE($aArgs);
 | |
| 		if (!is_null($aMean)) {
 | |
| 			$aCount = 0;
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 | |
| 					$arg = (integer) $arg;
 | |
| 				}
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					if (is_null($returnValue)) {
 | |
| 						$returnValue = pow(($arg - $aMean),2);
 | |
| 					} else {
 | |
| 						$returnValue += pow(($arg - $aMean),2);
 | |
| 					}
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if (($aCount > 0) && ($returnValue >= 0)) {
 | |
| 				return sqrt($returnValue / $aCount);
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::DIV0();
 | |
| 	}	//	function STDEVP()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * STDEVPA
 | |
| 	 *
 | |
| 	 * Calculates standard deviation based on the entire population, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		STDEVPA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function STDEVPA() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 
 | |
| 		// Return value
 | |
| 		$returnValue = null;
 | |
| 
 | |
| 		$aMean = self::AVERAGEA($aArgs);
 | |
| 		if (!is_null($aMean)) {
 | |
| 			$aCount = 0;
 | |
| 			foreach ($aArgs as $k => $arg) {
 | |
| 				if ((is_bool($arg)) &&
 | |
| 					(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 				} else {
 | |
| 					// Is it a numeric value?
 | |
| 					if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 | |
| 						if (is_bool($arg)) {
 | |
| 							$arg = (integer) $arg;
 | |
| 						} elseif (is_string($arg)) {
 | |
| 							$arg = 0;
 | |
| 						}
 | |
| 						if (is_null($returnValue)) {
 | |
| 							$returnValue = pow(($arg - $aMean),2);
 | |
| 						} else {
 | |
| 							$returnValue += pow(($arg - $aMean),2);
 | |
| 						}
 | |
| 						++$aCount;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Return
 | |
| 			if (($aCount > 0) && ($returnValue >= 0)) {
 | |
| 				return sqrt($returnValue / $aCount);
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::DIV0();
 | |
| 	}	//	function STDEVPA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * STEYX
 | |
| 	 *
 | |
| 	 * Returns the standard error of the predicted y-value for each x in the regression.
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function STEYX($yValues,$xValues) {
 | |
| 		if (!self::_checkTrendArrays($yValues,$xValues)) {
 | |
| 			return PHPExcel_Calculation_Functions::VALUE();
 | |
| 		}
 | |
| 		$yValueCount = count($yValues);
 | |
| 		$xValueCount = count($xValues);
 | |
| 
 | |
| 		if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 | |
| 			return PHPExcel_Calculation_Functions::NA();
 | |
| 		} elseif ($yValueCount == 1) {
 | |
| 			return PHPExcel_Calculation_Functions::DIV0();
 | |
| 		}
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues);
 | |
| 		return $bestFitLinear->getStdevOfResiduals();
 | |
| 	}	//	function STEYX()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * TDIST
 | |
| 	 *
 | |
| 	 * Returns the probability of Student's T distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$value			Value for the function
 | |
| 	 * @param	float		$degrees		degrees of freedom
 | |
| 	 * @param	float		$tails			number of tails (1 or 2)
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function TDIST($value, $degrees, $tails) {
 | |
| 		$value		= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$degrees	= floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 | |
| 		$tails		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails));
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {
 | |
| 			if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			//	tdist, which finds the probability that corresponds to a given value
 | |
| 			//	of t with k degrees of freedom. This algorithm is translated from a
 | |
| 			//	pascal function on p81 of "Statistical Computing in Pascal" by D
 | |
| 			//	Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
 | |
| 			//	London). The above Pascal algorithm is itself a translation of the
 | |
| 			//	fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
 | |
| 			//	Laboratory as reported in (among other places) "Applied Statistics
 | |
| 			//	Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
 | |
| 			//	Horwood Ltd.; W. Sussex, England).
 | |
| 			$tterm = $degrees;
 | |
| 			$ttheta = atan2($value,sqrt($tterm));
 | |
| 			$tc = cos($ttheta);
 | |
| 			$ts = sin($ttheta);
 | |
| 			$tsum = 0;
 | |
| 
 | |
| 			if (($degrees % 2) == 1) {
 | |
| 				$ti = 3;
 | |
| 				$tterm = $tc;
 | |
| 			} else {
 | |
| 				$ti = 2;
 | |
| 				$tterm = 1;
 | |
| 			}
 | |
| 
 | |
| 			$tsum = $tterm;
 | |
| 			while ($ti < $degrees) {
 | |
| 				$tterm *= $tc * $tc * ($ti - 1) / $ti;
 | |
| 				$tsum += $tterm;
 | |
| 				$ti += 2;
 | |
| 			}
 | |
| 			$tsum *= $ts;
 | |
| 			if (($degrees % 2) == 1) { $tsum = M_2DIVPI * ($tsum + $ttheta); }
 | |
| 			$tValue = 0.5 * (1 + $tsum);
 | |
| 			if ($tails == 1) {
 | |
| 				return 1 - abs($tValue);
 | |
| 			} else {
 | |
| 				return 1 - abs((1 - $tValue) - $tValue);
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function TDIST()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * TINV
 | |
| 	 *
 | |
| 	 * Returns the one-tailed probability of the chi-squared distribution.
 | |
| 	 *
 | |
| 	 * @param	float		$probability	Probability for the function
 | |
| 	 * @param	float		$degrees		degrees of freedom
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function TINV($probability, $degrees) {
 | |
| 		$probability	= PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 | |
| 		$degrees		= floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 | |
| 
 | |
| 		if ((is_numeric($probability)) && (is_numeric($degrees))) {
 | |
| 			$xLo = 100;
 | |
| 			$xHi = 0;
 | |
| 
 | |
| 			$x = $xNew = 1;
 | |
| 			$dx	= 1;
 | |
| 			$i = 0;
 | |
| 
 | |
| 			while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 | |
| 				// Apply Newton-Raphson step
 | |
| 				$result = self::TDIST($x, $degrees, 2);
 | |
| 				$error = $result - $probability;
 | |
| 				if ($error == 0.0) {
 | |
| 					$dx = 0;
 | |
| 				} elseif ($error < 0.0) {
 | |
| 					$xLo = $x;
 | |
| 				} else {
 | |
| 					$xHi = $x;
 | |
| 				}
 | |
| 				// Avoid division by zero
 | |
| 				if ($result != 0.0) {
 | |
| 					$dx = $error / $result;
 | |
| 					$xNew = $x - $dx;
 | |
| 				}
 | |
| 				// If the NR fails to converge (which for example may be the
 | |
| 				// case if the initial guess is too rough) we apply a bisection
 | |
| 				// step to determine a more narrow interval around the root.
 | |
| 				if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
 | |
| 					$xNew = ($xLo + $xHi) / 2;
 | |
| 					$dx = $xNew - $x;
 | |
| 				}
 | |
| 				$x = $xNew;
 | |
| 			}
 | |
| 			if ($i == MAX_ITERATIONS) {
 | |
| 				return PHPExcel_Calculation_Functions::NA();
 | |
| 			}
 | |
| 			return round($x,12);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function TINV()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * TREND
 | |
| 	 *
 | |
| 	 * Returns values along a linear trend
 | |
| 	 *
 | |
| 	 * @param	array of mixed		Data Series Y
 | |
| 	 * @param	array of mixed		Data Series X
 | |
| 	 * @param	array of mixed		Values of X for which we want to find Y
 | |
| 	 * @param	boolean				A logical value specifying whether to force the intersect to equal 0.
 | |
| 	 * @return	array of float
 | |
| 	 */
 | |
| 	public static function TREND($yValues,$xValues=array(),$newValues=array(),$const=True) {
 | |
| 		$yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
 | |
| 		$xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
 | |
| 		$newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
 | |
| 		$const	= (is_null($const))	? True :	(boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 | |
| 
 | |
| 		$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const);
 | |
| 		if (empty($newValues)) {
 | |
| 			$newValues = $bestFitLinear->getXValues();
 | |
| 		}
 | |
| 
 | |
| 		$returnArray = array();
 | |
| 		foreach($newValues as $xValue) {
 | |
| 			$returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);
 | |
| 		}
 | |
| 
 | |
| 		return $returnArray;
 | |
| 	}	//	function TREND()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * TRIMMEAN
 | |
| 	 *
 | |
| 	 * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
 | |
| 	 *		taken by excluding a percentage of data points from the top and bottom tails
 | |
| 	 *		of a data set.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		TRIMEAN(value1[,value2[, ...]],$discard)
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @param	float		$discard		Percentage to discard
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function TRIMMEAN() {
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 
 | |
| 		// Calculate
 | |
| 		$percent = array_pop($aArgs);
 | |
| 
 | |
| 		if ((is_numeric($percent)) && (!is_string($percent))) {
 | |
| 			if (($percent < 0) || ($percent > 1)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			$mArgs = array();
 | |
| 			foreach ($aArgs as $arg) {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 					$mArgs[] = $arg;
 | |
| 				}
 | |
| 			}
 | |
| 			$discard = floor(self::COUNT($mArgs) * $percent / 2);
 | |
| 			sort($mArgs);
 | |
| 			for ($i=0; $i < $discard; ++$i) {
 | |
| 				array_pop($mArgs);
 | |
| 				array_shift($mArgs);
 | |
| 			}
 | |
| 			return self::AVERAGE($mArgs);
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function TRIMMEAN()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * VARFunc
 | |
| 	 *
 | |
| 	 * Estimates variance based on a sample.
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		VAR(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function VARFunc() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::DIV0();
 | |
| 
 | |
| 		$summerA = $summerB = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		$aCount = 0;
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			if (is_bool($arg)) { $arg = (integer) $arg; }
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				$summerA += ($arg * $arg);
 | |
| 				$summerB += $arg;
 | |
| 				++$aCount;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 1) {
 | |
| 			$summerA *= $aCount;
 | |
| 			$summerB *= $summerB;
 | |
| 			$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function VARFunc()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * VARA
 | |
| 	 *
 | |
| 	 * Estimates variance based on a sample, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		VARA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function VARA() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::DIV0();
 | |
| 
 | |
| 		$summerA = $summerB = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 		$aCount = 0;
 | |
| 		foreach ($aArgs as $k => $arg) {
 | |
| 			if ((is_string($arg)) &&
 | |
| 				(PHPExcel_Calculation_Functions::isValue($k))) {
 | |
| 				return PHPExcel_Calculation_Functions::VALUE();
 | |
| 			} elseif ((is_string($arg)) &&
 | |
| 				(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 			} else {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 | |
| 					if (is_bool($arg)) {
 | |
| 						$arg = (integer) $arg;
 | |
| 					} elseif (is_string($arg)) {
 | |
| 						$arg = 0;
 | |
| 					}
 | |
| 					$summerA += ($arg * $arg);
 | |
| 					$summerB += $arg;
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 1) {
 | |
| 			$summerA *= $aCount;
 | |
| 			$summerB *= $summerB;
 | |
| 			$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function VARA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * VARP
 | |
| 	 *
 | |
| 	 * Calculates variance based on the entire population
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		VARP(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function VARP() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::DIV0();
 | |
| 
 | |
| 		$summerA = $summerB = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 | |
| 		$aCount = 0;
 | |
| 		foreach ($aArgs as $arg) {
 | |
| 			if (is_bool($arg)) { $arg = (integer) $arg; }
 | |
| 			// Is it a numeric value?
 | |
| 			if ((is_numeric($arg)) && (!is_string($arg))) {
 | |
| 				$summerA += ($arg * $arg);
 | |
| 				$summerB += $arg;
 | |
| 				++$aCount;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 0) {
 | |
| 			$summerA *= $aCount;
 | |
| 			$summerB *= $summerB;
 | |
| 			$returnValue = ($summerA - $summerB) / ($aCount * $aCount);
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function VARP()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * VARPA
 | |
| 	 *
 | |
| 	 * Calculates variance based on the entire population, including numbers, text, and logical values
 | |
| 	 *
 | |
| 	 * Excel Function:
 | |
| 	 *		VARPA(value1[,value2[, ...]])
 | |
| 	 *
 | |
| 	 * @access	public
 | |
| 	 * @category Statistical Functions
 | |
| 	 * @param	mixed		$arg,...		Data values
 | |
| 	 * @return	float
 | |
| 	 */
 | |
| 	public static function VARPA() {
 | |
| 		// Return value
 | |
| 		$returnValue = PHPExcel_Calculation_Functions::DIV0();
 | |
| 
 | |
| 		$summerA = $summerB = 0;
 | |
| 
 | |
| 		// Loop through arguments
 | |
| 		$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 | |
| 		$aCount = 0;
 | |
| 		foreach ($aArgs as $k => $arg) {
 | |
| 			if ((is_string($arg)) &&
 | |
| 				(PHPExcel_Calculation_Functions::isValue($k))) {
 | |
| 				return PHPExcel_Calculation_Functions::VALUE();
 | |
| 			} elseif ((is_string($arg)) &&
 | |
| 				(!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 | |
| 			} else {
 | |
| 				// Is it a numeric value?
 | |
| 				if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 | |
| 					if (is_bool($arg)) {
 | |
| 						$arg = (integer) $arg;
 | |
| 					} elseif (is_string($arg)) {
 | |
| 						$arg = 0;
 | |
| 					}
 | |
| 					$summerA += ($arg * $arg);
 | |
| 					$summerB += $arg;
 | |
| 					++$aCount;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Return
 | |
| 		if ($aCount > 0) {
 | |
| 			$summerA *= $aCount;
 | |
| 			$summerB *= $summerB;
 | |
| 			$returnValue = ($summerA - $summerB) / ($aCount * $aCount);
 | |
| 		}
 | |
| 		return $returnValue;
 | |
| 	}	//	function VARPA()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * WEIBULL
 | |
| 	 *
 | |
| 	 * Returns the Weibull distribution. Use this distribution in reliability
 | |
| 	 * analysis, such as calculating a device's mean time to failure.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @param	float		$alpha		Alpha Parameter
 | |
| 	 * @param	float		$beta		Beta Parameter
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function WEIBULL($value, $alpha, $beta, $cumulative) {
 | |
| 		$value	= PHPExcel_Calculation_Functions::flattenSingleValue($value);
 | |
| 		$alpha	= PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 | |
| 		$beta	= PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 | |
| 
 | |
| 		if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {
 | |
| 			if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {
 | |
| 				return PHPExcel_Calculation_Functions::NaN();
 | |
| 			}
 | |
| 			if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 | |
| 				if ($cumulative) {
 | |
| 					return 1 - exp(0 - pow($value / $beta,$alpha));
 | |
| 				} else {
 | |
| 					return ($alpha / pow($beta,$alpha)) * pow($value,$alpha - 1) * exp(0 - pow($value / $beta,$alpha));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return PHPExcel_Calculation_Functions::VALUE();
 | |
| 	}	//	function WEIBULL()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 * ZTEST
 | |
| 	 *
 | |
| 	 * Returns the Weibull distribution. Use this distribution in reliability
 | |
| 	 * analysis, such as calculating a device's mean time to failure.
 | |
| 	 *
 | |
| 	 * @param	float		$value
 | |
| 	 * @param	float		$alpha		Alpha Parameter
 | |
| 	 * @param	float		$beta		Beta Parameter
 | |
| 	 * @param	boolean		$cumulative
 | |
| 	 * @return	float
 | |
| 	 *
 | |
| 	 */
 | |
| 	public static function ZTEST($dataSet, $m0, $sigma=null) {
 | |
| 		$dataSet	= PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet);
 | |
| 		$m0			= PHPExcel_Calculation_Functions::flattenSingleValue($m0);
 | |
| 		$sigma		= PHPExcel_Calculation_Functions::flattenSingleValue($sigma);
 | |
| 
 | |
| 		if (is_null($sigma)) {
 | |
| 			$sigma = self::STDEV($dataSet);
 | |
| 		}
 | |
| 		$n = count($dataSet);
 | |
| 
 | |
| 		return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0)/($sigma/SQRT($n)));
 | |
| 	}	//	function ZTEST()
 | |
| 
 | |
| }	//	class PHPExcel_Calculation_Statistical
 |