235 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| /**
 | |
|  *	@package JAMA
 | |
|  *
 | |
|  *	For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
 | |
|  *	orthogonal matrix Q and an n-by-n upper triangular matrix R so that
 | |
|  *	A = Q*R.
 | |
|  *
 | |
|  *	The QR decompostion always exists, even if the matrix does not have
 | |
|  *	full rank, so the constructor will never fail.  The primary use of the
 | |
|  *	QR decomposition is in the least squares solution of nonsquare systems
 | |
|  *	of simultaneous linear equations.  This will fail if isFullRank()
 | |
|  *	returns false.
 | |
|  *
 | |
|  *	@author  Paul Meagher
 | |
|  *	@license PHP v3.0
 | |
|  *	@version 1.1
 | |
|  */
 | |
| class PHPExcel_Shared_JAMA_QRDecomposition {
 | |
| 
 | |
| 	const MatrixRankException	= "Can only perform operation on full-rank matrix.";
 | |
| 
 | |
| 	/**
 | |
| 	 *	Array for internal storage of decomposition.
 | |
| 	 *	@var array
 | |
| 	 */
 | |
| 	private $QR = array();
 | |
| 
 | |
| 	/**
 | |
| 	 *	Row dimension.
 | |
| 	 *	@var integer
 | |
| 	 */
 | |
| 	private $m;
 | |
| 
 | |
| 	/**
 | |
| 	*	Column dimension.
 | |
| 	*	@var integer
 | |
| 	*/
 | |
| 	private $n;
 | |
| 
 | |
| 	/**
 | |
| 	 *	Array for internal storage of diagonal of R.
 | |
| 	 *	@var  array
 | |
| 	 */
 | |
| 	private $Rdiag = array();
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	QR Decomposition computed by Householder reflections.
 | |
| 	 *
 | |
| 	 *	@param matrix $A Rectangular matrix
 | |
| 	 *	@return Structure to access R and the Householder vectors and compute Q.
 | |
| 	 */
 | |
| 	public function __construct($A) {
 | |
| 		if($A instanceof PHPExcel_Shared_JAMA_Matrix) {
 | |
| 			// Initialize.
 | |
| 			$this->QR = $A->getArrayCopy();
 | |
| 			$this->m  = $A->getRowDimension();
 | |
| 			$this->n  = $A->getColumnDimension();
 | |
| 			// Main loop.
 | |
| 			for ($k = 0; $k < $this->n; ++$k) {
 | |
| 				// Compute 2-norm of k-th column without under/overflow.
 | |
| 				$nrm = 0.0;
 | |
| 				for ($i = $k; $i < $this->m; ++$i) {
 | |
| 					$nrm = hypo($nrm, $this->QR[$i][$k]);
 | |
| 				}
 | |
| 				if ($nrm != 0.0) {
 | |
| 					// Form k-th Householder vector.
 | |
| 					if ($this->QR[$k][$k] < 0) {
 | |
| 						$nrm = -$nrm;
 | |
| 					}
 | |
| 					for ($i = $k; $i < $this->m; ++$i) {
 | |
| 						$this->QR[$i][$k] /= $nrm;
 | |
| 					}
 | |
| 					$this->QR[$k][$k] += 1.0;
 | |
| 					// Apply transformation to remaining columns.
 | |
| 					for ($j = $k+1; $j < $this->n; ++$j) {
 | |
| 						$s = 0.0;
 | |
| 						for ($i = $k; $i < $this->m; ++$i) {
 | |
| 							$s += $this->QR[$i][$k] * $this->QR[$i][$j];
 | |
| 						}
 | |
| 						$s = -$s/$this->QR[$k][$k];
 | |
| 						for ($i = $k; $i < $this->m; ++$i) {
 | |
| 							$this->QR[$i][$j] += $s * $this->QR[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				$this->Rdiag[$k] = -$nrm;
 | |
| 			}
 | |
| 		} else {
 | |
| 			throw new PHPExcel_Calculation_Exception(PHPExcel_Shared_JAMA_Matrix::ArgumentTypeException);
 | |
| 		}
 | |
| 	}	//	function __construct()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Is the matrix full rank?
 | |
| 	 *
 | |
| 	 *	@return boolean true if R, and hence A, has full rank, else false.
 | |
| 	 */
 | |
| 	public function isFullRank() {
 | |
| 		for ($j = 0; $j < $this->n; ++$j) {
 | |
| 			if ($this->Rdiag[$j] == 0) {
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 		return true;
 | |
| 	}	//	function isFullRank()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return the Householder vectors
 | |
| 	 *
 | |
| 	 *	@return Matrix Lower trapezoidal matrix whose columns define the reflections
 | |
| 	 */
 | |
| 	public function getH() {
 | |
| 		for ($i = 0; $i < $this->m; ++$i) {
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				if ($i >= $j) {
 | |
| 					$H[$i][$j] = $this->QR[$i][$j];
 | |
| 				} else {
 | |
| 					$H[$i][$j] = 0.0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return new PHPExcel_Shared_JAMA_Matrix($H);
 | |
| 	}	//	function getH()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Return the upper triangular factor
 | |
| 	 *
 | |
| 	 *	@return Matrix upper triangular factor
 | |
| 	 */
 | |
| 	public function getR() {
 | |
| 		for ($i = 0; $i < $this->n; ++$i) {
 | |
| 			for ($j = 0; $j < $this->n; ++$j) {
 | |
| 				if ($i < $j) {
 | |
| 					$R[$i][$j] = $this->QR[$i][$j];
 | |
| 				} elseif ($i == $j) {
 | |
| 					$R[$i][$j] = $this->Rdiag[$i];
 | |
| 				} else {
 | |
| 					$R[$i][$j] = 0.0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		return new PHPExcel_Shared_JAMA_Matrix($R);
 | |
| 	}	//	function getR()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Generate and return the (economy-sized) orthogonal factor
 | |
| 	 *
 | |
| 	 *	@return Matrix orthogonal factor
 | |
| 	 */
 | |
| 	public function getQ() {
 | |
| 		for ($k = $this->n-1; $k >= 0; --$k) {
 | |
| 			for ($i = 0; $i < $this->m; ++$i) {
 | |
| 				$Q[$i][$k] = 0.0;
 | |
| 			}
 | |
| 			$Q[$k][$k] = 1.0;
 | |
| 			for ($j = $k; $j < $this->n; ++$j) {
 | |
| 				if ($this->QR[$k][$k] != 0) {
 | |
| 					$s = 0.0;
 | |
| 					for ($i = $k; $i < $this->m; ++$i) {
 | |
| 						$s += $this->QR[$i][$k] * $Q[$i][$j];
 | |
| 					}
 | |
| 					$s = -$s/$this->QR[$k][$k];
 | |
| 					for ($i = $k; $i < $this->m; ++$i) {
 | |
| 						$Q[$i][$j] += $s * $this->QR[$i][$k];
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		for($i = 0; $i < count($Q); ++$i) {
 | |
| 			for($j = 0; $j < count($Q); ++$j) {
 | |
| 				if(! isset($Q[$i][$j]) ) {
 | |
| 					$Q[$i][$j] = 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		*/
 | |
| 		return new PHPExcel_Shared_JAMA_Matrix($Q);
 | |
| 	}	//	function getQ()
 | |
| 
 | |
| 
 | |
| 	/**
 | |
| 	 *	Least squares solution of A*X = B
 | |
| 	 *
 | |
| 	 *	@param Matrix $B A Matrix with as many rows as A and any number of columns.
 | |
| 	 *	@return Matrix Matrix that minimizes the two norm of Q*R*X-B.
 | |
| 	 */
 | |
| 	public function solve($B) {
 | |
| 		if ($B->getRowDimension() == $this->m) {
 | |
| 			if ($this->isFullRank()) {
 | |
| 				// Copy right hand side
 | |
| 				$nx = $B->getColumnDimension();
 | |
| 				$X  = $B->getArrayCopy();
 | |
| 				// Compute Y = transpose(Q)*B
 | |
| 				for ($k = 0; $k < $this->n; ++$k) {
 | |
| 					for ($j = 0; $j < $nx; ++$j) {
 | |
| 						$s = 0.0;
 | |
| 						for ($i = $k; $i < $this->m; ++$i) {
 | |
| 							$s += $this->QR[$i][$k] * $X[$i][$j];
 | |
| 						}
 | |
| 						$s = -$s/$this->QR[$k][$k];
 | |
| 						for ($i = $k; $i < $this->m; ++$i) {
 | |
| 							$X[$i][$j] += $s * $this->QR[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				// Solve R*X = Y;
 | |
| 				for ($k = $this->n-1; $k >= 0; --$k) {
 | |
| 					for ($j = 0; $j < $nx; ++$j) {
 | |
| 						$X[$k][$j] /= $this->Rdiag[$k];
 | |
| 					}
 | |
| 					for ($i = 0; $i < $k; ++$i) {
 | |
| 						for ($j = 0; $j < $nx; ++$j) {
 | |
| 							$X[$i][$j] -= $X[$k][$j]* $this->QR[$i][$k];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				$X = new PHPExcel_Shared_JAMA_Matrix($X);
 | |
| 				return ($X->getMatrix(0, $this->n-1, 0, $nx));
 | |
| 			} else {
 | |
| 				throw new PHPExcel_Calculation_Exception(self::MatrixRankException);
 | |
| 			}
 | |
| 		} else {
 | |
| 			throw new PHPExcel_Calculation_Exception(PHPExcel_Shared_JAMA_Matrix::MatrixDimensionException);
 | |
| 		}
 | |
| 	}	//	function solve()
 | |
| 
 | |
| }	//	PHPExcel_Shared_JAMA_class QRDecomposition
 | 
