233 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
		
		
			
		
	
	
			233 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
|   | <?php | ||
|  | /** | ||
|  |  *	@package JAMA | ||
|  |  * | ||
|  |  *	For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n | ||
|  |  *	orthogonal matrix Q and an n-by-n upper triangular matrix R so that | ||
|  |  *	A = Q*R. | ||
|  |  * | ||
|  |  *	The QR decompostion always exists, even if the matrix does not have | ||
|  |  *	full rank, so the constructor will never fail.  The primary use of the | ||
|  |  *	QR decomposition is in the least squares solution of nonsquare systems | ||
|  |  *	of simultaneous linear equations.  This will fail if isFullRank() | ||
|  |  *	returns false. | ||
|  |  * | ||
|  |  *	@author  Paul Meagher | ||
|  |  *	@license PHP v3.0 | ||
|  |  *	@version 1.1 | ||
|  |  */ | ||
|  | class QRDecomposition { | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Array for internal storage of decomposition. | ||
|  | 	 *	@var array | ||
|  | 	 */ | ||
|  | 	private $QR = array(); | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Row dimension. | ||
|  | 	 *	@var integer | ||
|  | 	 */ | ||
|  | 	private $m; | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	*	Column dimension. | ||
|  | 	*	@var integer | ||
|  | 	*/ | ||
|  | 	private $n; | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Array for internal storage of diagonal of R. | ||
|  | 	 *	@var  array | ||
|  | 	 */ | ||
|  | 	private $Rdiag = array(); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	QR Decomposition computed by Householder reflections. | ||
|  | 	 * | ||
|  | 	 *	@param matrix $A Rectangular matrix | ||
|  | 	 *	@return Structure to access R and the Householder vectors and compute Q. | ||
|  | 	 */ | ||
|  | 	public function __construct($A) { | ||
|  | 		if($A instanceof Matrix) { | ||
|  | 			// Initialize.
 | ||
|  | 			$this->QR = $A->getArrayCopy(); | ||
|  | 			$this->m  = $A->getRowDimension(); | ||
|  | 			$this->n  = $A->getColumnDimension(); | ||
|  | 			// Main loop.
 | ||
|  | 			for ($k = 0; $k < $this->n; ++$k) { | ||
|  | 				// Compute 2-norm of k-th column without under/overflow.
 | ||
|  | 				$nrm = 0.0; | ||
|  | 				for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 					$nrm = hypo($nrm, $this->QR[$i][$k]); | ||
|  | 				} | ||
|  | 				if ($nrm != 0.0) { | ||
|  | 					// Form k-th Householder vector.
 | ||
|  | 					if ($this->QR[$k][$k] < 0) { | ||
|  | 						$nrm = -$nrm; | ||
|  | 					} | ||
|  | 					for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 						$this->QR[$i][$k] /= $nrm; | ||
|  | 					} | ||
|  | 					$this->QR[$k][$k] += 1.0; | ||
|  | 					// Apply transformation to remaining columns.
 | ||
|  | 					for ($j = $k+1; $j < $this->n; ++$j) { | ||
|  | 						$s = 0.0; | ||
|  | 						for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 							$s += $this->QR[$i][$k] * $this->QR[$i][$j]; | ||
|  | 						} | ||
|  | 						$s = -$s/$this->QR[$k][$k]; | ||
|  | 						for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 							$this->QR[$i][$j] += $s * $this->QR[$i][$k]; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				$this->Rdiag[$k] = -$nrm; | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			throw new Exception(JAMAError(ArgumentTypeException)); | ||
|  | 		} | ||
|  | 	}	//	function __construct()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Is the matrix full rank? | ||
|  | 	 * | ||
|  | 	 *	@return boolean true if R, and hence A, has full rank, else false. | ||
|  | 	 */ | ||
|  | 	public function isFullRank() { | ||
|  | 		for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 			if ($this->Rdiag[$j] == 0) { | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return true; | ||
|  | 	}	//	function isFullRank()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Return the Householder vectors | ||
|  | 	 * | ||
|  | 	 *	@return Matrix Lower trapezoidal matrix whose columns define the reflections | ||
|  | 	 */ | ||
|  | 	public function getH() { | ||
|  | 		for ($i = 0; $i < $this->m; ++$i) { | ||
|  | 			for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 				if ($i >= $j) { | ||
|  | 					$H[$i][$j] = $this->QR[$i][$j]; | ||
|  | 				} else { | ||
|  | 					$H[$i][$j] = 0.0; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return new Matrix($H); | ||
|  | 	}	//	function getH()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Return the upper triangular factor | ||
|  | 	 * | ||
|  | 	 *	@return Matrix upper triangular factor | ||
|  | 	 */ | ||
|  | 	public function getR() { | ||
|  | 		for ($i = 0; $i < $this->n; ++$i) { | ||
|  | 			for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 				if ($i < $j) { | ||
|  | 					$R[$i][$j] = $this->QR[$i][$j]; | ||
|  | 				} elseif ($i == $j) { | ||
|  | 					$R[$i][$j] = $this->Rdiag[$i]; | ||
|  | 				} else { | ||
|  | 					$R[$i][$j] = 0.0; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return new Matrix($R); | ||
|  | 	}	//	function getR()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Generate and return the (economy-sized) orthogonal factor | ||
|  | 	 * | ||
|  | 	 *	@return Matrix orthogonal factor | ||
|  | 	 */ | ||
|  | 	public function getQ() { | ||
|  | 		for ($k = $this->n-1; $k >= 0; --$k) { | ||
|  | 			for ($i = 0; $i < $this->m; ++$i) { | ||
|  | 				$Q[$i][$k] = 0.0; | ||
|  | 			} | ||
|  | 			$Q[$k][$k] = 1.0; | ||
|  | 			for ($j = $k; $j < $this->n; ++$j) { | ||
|  | 				if ($this->QR[$k][$k] != 0) { | ||
|  | 					$s = 0.0; | ||
|  | 					for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 						$s += $this->QR[$i][$k] * $Q[$i][$j]; | ||
|  | 					} | ||
|  | 					$s = -$s/$this->QR[$k][$k]; | ||
|  | 					for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 						$Q[$i][$j] += $s * $this->QR[$i][$k]; | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		/* | ||
|  | 		for($i = 0; $i < count($Q); ++$i) { | ||
|  | 			for($j = 0; $j < count($Q); ++$j) { | ||
|  | 				if(! isset($Q[$i][$j]) ) { | ||
|  | 					$Q[$i][$j] = 0; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		*/ | ||
|  | 		return new Matrix($Q); | ||
|  | 	}	//	function getQ()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Least squares solution of A*X = B | ||
|  | 	 * | ||
|  | 	 *	@param Matrix $B A Matrix with as many rows as A and any number of columns. | ||
|  | 	 *	@return Matrix Matrix that minimizes the two norm of Q*R*X-B. | ||
|  | 	 */ | ||
|  | 	public function solve($B) { | ||
|  | 		if ($B->getRowDimension() == $this->m) { | ||
|  | 			if ($this->isFullRank()) { | ||
|  | 				// Copy right hand side
 | ||
|  | 				$nx = $B->getColumnDimension(); | ||
|  | 				$X  = $B->getArrayCopy(); | ||
|  | 				// Compute Y = transpose(Q)*B
 | ||
|  | 				for ($k = 0; $k < $this->n; ++$k) { | ||
|  | 					for ($j = 0; $j < $nx; ++$j) { | ||
|  | 						$s = 0.0; | ||
|  | 						for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 							$s += $this->QR[$i][$k] * $X[$i][$j]; | ||
|  | 						} | ||
|  | 						$s = -$s/$this->QR[$k][$k]; | ||
|  | 						for ($i = $k; $i < $this->m; ++$i) { | ||
|  | 							$X[$i][$j] += $s * $this->QR[$i][$k]; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				// Solve R*X = Y;
 | ||
|  | 				for ($k = $this->n-1; $k >= 0; --$k) { | ||
|  | 					for ($j = 0; $j < $nx; ++$j) { | ||
|  | 						$X[$k][$j] /= $this->Rdiag[$k]; | ||
|  | 					} | ||
|  | 					for ($i = 0; $i < $k; ++$i) { | ||
|  | 						for ($j = 0; $j < $nx; ++$j) { | ||
|  | 							$X[$i][$j] -= $X[$k][$j]* $this->QR[$i][$k]; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				$X = new Matrix($X); | ||
|  | 				return ($X->getMatrix(0, $this->n-1, 0, $nx)); | ||
|  | 			} else { | ||
|  | 				throw new Exception(JAMAError(MatrixRankException)); | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			throw new Exception(JAMAError(MatrixDimensionException)); | ||
|  | 		} | ||
|  | 	}	//	function solve()
 | ||
|  | 
 | ||
|  | }	//	class QRDecomposition
 |