| 
									
										
										
										
											2010-08-26 19:14:53 +00:00
										 |  |  | <?php | 
					
						
							|  |  |  | /** | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |  *    @package JAMA | 
					
						
							| 
									
										
										
										
											2010-08-26 19:14:53 +00:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |  *    Class to obtain eigenvalues and eigenvectors of a real matrix. | 
					
						
							| 
									
										
										
										
											2010-08-26 19:14:53 +00:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |  *    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D | 
					
						
							|  |  |  |  *    is diagonal and the eigenvector matrix V is orthogonal (i.e. | 
					
						
							|  |  |  |  *    A = V.times(D.times(V.transpose())) and V.times(V.transpose()) | 
					
						
							|  |  |  |  *    equals the identity matrix). | 
					
						
							| 
									
										
										
										
											2010-08-26 19:14:53 +00:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |  *    If A is not symmetric, then the eigenvalue matrix D is block diagonal | 
					
						
							|  |  |  |  *    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, | 
					
						
							|  |  |  |  *    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The | 
					
						
							|  |  |  |  *    columns of V represent the eigenvectors in the sense that A*V = V*D, | 
					
						
							|  |  |  |  *    i.e. A.times(V) equals V.times(D).  The matrix V may be badly | 
					
						
							|  |  |  |  *    conditioned, or even singular, so the validity of the equation | 
					
						
							|  |  |  |  *    A = V*D*inverse(V) depends upon V.cond(). | 
					
						
							| 
									
										
										
										
											2010-08-26 19:14:53 +00:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |  *    @author  Paul Meagher | 
					
						
							|  |  |  |  *    @license PHP v3.0 | 
					
						
							|  |  |  |  *    @version 1.1 | 
					
						
							| 
									
										
										
										
											2010-08-26 19:14:53 +00:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  | class EigenvalueDecomposition | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |     /** | 
					
						
							|  |  |  |      *    Row and column dimension (square matrix). | 
					
						
							|  |  |  |      *    @var int | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     private $n; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Internal symmetry flag. | 
					
						
							|  |  |  |      *    @var int | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     private $issymmetric; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Arrays for internal storage of eigenvalues. | 
					
						
							|  |  |  |      *    @var array | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     private $d = array(); | 
					
						
							|  |  |  |     private $e = array(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Array for internal storage of eigenvectors. | 
					
						
							|  |  |  |      *    @var array | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     private $V = array(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |     *    Array for internal storage of nonsymmetric Hessenberg form. | 
					
						
							|  |  |  |     *    @var array | 
					
						
							|  |  |  |     */ | 
					
						
							|  |  |  |     private $H = array(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |     *    Working storage for nonsymmetric algorithm. | 
					
						
							|  |  |  |     *    @var array | 
					
						
							|  |  |  |     */ | 
					
						
							|  |  |  |     private $ort; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |     *    Used for complex scalar division. | 
					
						
							|  |  |  |     *    @var float | 
					
						
							|  |  |  |     */ | 
					
						
							|  |  |  |     private $cdivr; | 
					
						
							|  |  |  |     private $cdivi; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Symmetric Householder reduction to tridiagonal form. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access private | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 13:00:02 +00:00
										 |  |  |     private function tred2() | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         //  This is derived from the Algol procedures tred2 by
 | 
					
						
							|  |  |  |         //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
 | 
					
						
							|  |  |  |         //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 | 
					
						
							|  |  |  |         //  Fortran subroutine in EISPACK.
 | 
					
						
							|  |  |  |         $this->d = $this->V[$this->n-1]; | 
					
						
							|  |  |  |         // Householder reduction to tridiagonal form.
 | 
					
						
							|  |  |  |         for ($i = $this->n-1; $i > 0; --$i) { | 
					
						
							|  |  |  |             $i_ = $i -1; | 
					
						
							|  |  |  |             // Scale to avoid under/overflow.
 | 
					
						
							|  |  |  |             $h = $scale = 0.0; | 
					
						
							|  |  |  |             $scale += array_sum(array_map(abs, $this->d)); | 
					
						
							|  |  |  |             if ($scale == 0.0) { | 
					
						
							|  |  |  |                 $this->e[$i] = $this->d[$i_]; | 
					
						
							|  |  |  |                 $this->d = array_slice($this->V[$i_], 0, $i_); | 
					
						
							|  |  |  |                 for ($j = 0; $j < $i; ++$j) { | 
					
						
							|  |  |  |                     $this->V[$j][$i] = $this->V[$i][$j] = 0.0; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } else { | 
					
						
							|  |  |  |                 // Generate Householder vector.
 | 
					
						
							|  |  |  |                 for ($k = 0; $k < $i; ++$k) { | 
					
						
							|  |  |  |                     $this->d[$k] /= $scale; | 
					
						
							|  |  |  |                     $h += pow($this->d[$k], 2); | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $f = $this->d[$i_]; | 
					
						
							|  |  |  |                 $g = sqrt($h); | 
					
						
							|  |  |  |                 if ($f > 0) { | 
					
						
							|  |  |  |                     $g = -$g; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $this->e[$i] = $scale * $g; | 
					
						
							|  |  |  |                 $h = $h - $f * $g; | 
					
						
							|  |  |  |                 $this->d[$i_] = $f - $g; | 
					
						
							|  |  |  |                 for ($j = 0; $j < $i; ++$j) { | 
					
						
							|  |  |  |                     $this->e[$j] = 0.0; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 // Apply similarity transformation to remaining columns.
 | 
					
						
							|  |  |  |                 for ($j = 0; $j < $i; ++$j) { | 
					
						
							|  |  |  |                     $f = $this->d[$j]; | 
					
						
							|  |  |  |                     $this->V[$j][$i] = $f; | 
					
						
							|  |  |  |                     $g = $this->e[$j] + $this->V[$j][$j] * $f; | 
					
						
							|  |  |  |                     for ($k = $j+1; $k <= $i_; ++$k) { | 
					
						
							|  |  |  |                         $g += $this->V[$k][$j] * $this->d[$k]; | 
					
						
							|  |  |  |                         $this->e[$k] += $this->V[$k][$j] * $f; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $this->e[$j] = $g; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $f = 0.0; | 
					
						
							|  |  |  |                 for ($j = 0; $j < $i; ++$j) { | 
					
						
							|  |  |  |                     $this->e[$j] /= $h; | 
					
						
							|  |  |  |                     $f += $this->e[$j] * $this->d[$j]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $hh = $f / (2 * $h); | 
					
						
							|  |  |  |                 for ($j=0; $j < $i; ++$j) { | 
					
						
							|  |  |  |                     $this->e[$j] -= $hh * $this->d[$j]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 for ($j = 0; $j < $i; ++$j) { | 
					
						
							|  |  |  |                     $f = $this->d[$j]; | 
					
						
							|  |  |  |                     $g = $this->e[$j]; | 
					
						
							|  |  |  |                     for ($k = $j; $k <= $i_; ++$k) { | 
					
						
							|  |  |  |                         $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]); | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $this->d[$j] = $this->V[$i-1][$j]; | 
					
						
							|  |  |  |                     $this->V[$i][$j] = 0.0; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             $this->d[$i] = $h; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Accumulate transformations.
 | 
					
						
							|  |  |  |         for ($i = 0; $i < $this->n-1; ++$i) { | 
					
						
							|  |  |  |             $this->V[$this->n-1][$i] = $this->V[$i][$i]; | 
					
						
							|  |  |  |             $this->V[$i][$i] = 1.0; | 
					
						
							|  |  |  |             $h = $this->d[$i+1]; | 
					
						
							|  |  |  |             if ($h != 0.0) { | 
					
						
							|  |  |  |                 for ($k = 0; $k <= $i; ++$k) { | 
					
						
							|  |  |  |                     $this->d[$k] = $this->V[$k][$i+1] / $h; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 for ($j = 0; $j <= $i; ++$j) { | 
					
						
							|  |  |  |                     $g = 0.0; | 
					
						
							|  |  |  |                     for ($k = 0; $k <= $i; ++$k) { | 
					
						
							|  |  |  |                         $g += $this->V[$k][$i+1] * $this->V[$k][$j]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     for ($k = 0; $k <= $i; ++$k) { | 
					
						
							|  |  |  |                         $this->V[$k][$j] -= $g * $this->d[$k]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             for ($k = 0; $k <= $i; ++$k) { | 
					
						
							|  |  |  |                 $this->V[$k][$i+1] = 0.0; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         $this->d = $this->V[$this->n-1]; | 
					
						
							|  |  |  |         $this->V[$this->n-1] = array_fill(0, $j, 0.0); | 
					
						
							|  |  |  |         $this->V[$this->n-1][$this->n-1] = 1.0; | 
					
						
							|  |  |  |         $this->e[0] = 0.0; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Symmetric tridiagonal QL algorithm. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    This is derived from the Algol procedures tql2, by | 
					
						
							|  |  |  |      *    Bowdler, Martin, Reinsch, and Wilkinson, Handbook for | 
					
						
							|  |  |  |      *    Auto. Comp., Vol.ii-Linear Algebra, and the corresponding | 
					
						
							|  |  |  |      *    Fortran subroutine in EISPACK. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access private | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     private function tql2() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         for ($i = 1; $i < $this->n; ++$i) { | 
					
						
							|  |  |  |             $this->e[$i-1] = $this->e[$i]; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         $this->e[$this->n-1] = 0.0; | 
					
						
							|  |  |  |         $f = 0.0; | 
					
						
							|  |  |  |         $tst1 = 0.0; | 
					
						
							| 
									
										
										
										
											2015-05-17 13:00:02 +00:00
										 |  |  |         $eps  = pow(2.0, -52.0); | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         for ($l = 0; $l < $this->n; ++$l) { | 
					
						
							|  |  |  |             // Find small subdiagonal element
 | 
					
						
							|  |  |  |             $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l])); | 
					
						
							|  |  |  |             $m = $l; | 
					
						
							|  |  |  |             while ($m < $this->n) { | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                 if (abs($this->e[$m]) <= $eps * $tst1) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                     break; | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                 } | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                 ++$m; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             // If m == l, $this->d[l] is an eigenvalue,
 | 
					
						
							|  |  |  |             // otherwise, iterate.
 | 
					
						
							|  |  |  |             if ($m > $l) { | 
					
						
							|  |  |  |                 $iter = 0; | 
					
						
							|  |  |  |                 do { | 
					
						
							|  |  |  |                     // Could check iteration count here.
 | 
					
						
							|  |  |  |                     $iter += 1; | 
					
						
							|  |  |  |                     // Compute implicit shift
 | 
					
						
							|  |  |  |                     $g = $this->d[$l]; | 
					
						
							|  |  |  |                     $p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]); | 
					
						
							|  |  |  |                     $r = hypo($p, 1.0); | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                     if ($p < 0) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                         $r *= -1; | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                     } | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                     $this->d[$l] = $this->e[$l] / ($p + $r); | 
					
						
							|  |  |  |                     $this->d[$l+1] = $this->e[$l] * ($p + $r); | 
					
						
							|  |  |  |                     $dl1 = $this->d[$l+1]; | 
					
						
							|  |  |  |                     $h = $g - $this->d[$l]; | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                     for ($i = $l + 2; $i < $this->n; ++$i) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                         $this->d[$i] -= $h; | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                     } | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                     $f += $h; | 
					
						
							|  |  |  |                     // Implicit QL transformation.
 | 
					
						
							|  |  |  |                     $p = $this->d[$m]; | 
					
						
							|  |  |  |                     $c = 1.0; | 
					
						
							|  |  |  |                     $c2 = $c3 = $c; | 
					
						
							|  |  |  |                     $el1 = $this->e[$l + 1]; | 
					
						
							|  |  |  |                     $s = $s2 = 0.0; | 
					
						
							|  |  |  |                     for ($i = $m-1; $i >= $l; --$i) { | 
					
						
							|  |  |  |                         $c3 = $c2; | 
					
						
							|  |  |  |                         $c2 = $c; | 
					
						
							|  |  |  |                         $s2 = $s; | 
					
						
							|  |  |  |                         $g  = $c * $this->e[$i]; | 
					
						
							|  |  |  |                         $h  = $c * $p; | 
					
						
							|  |  |  |                         $r  = hypo($p, $this->e[$i]); | 
					
						
							|  |  |  |                         $this->e[$i+1] = $s * $r; | 
					
						
							|  |  |  |                         $s = $this->e[$i] / $r; | 
					
						
							|  |  |  |                         $c = $p / $r; | 
					
						
							|  |  |  |                         $p = $c * $this->d[$i] - $s * $g; | 
					
						
							|  |  |  |                         $this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]); | 
					
						
							|  |  |  |                         // Accumulate transformation.
 | 
					
						
							|  |  |  |                         for ($k = 0; $k < $this->n; ++$k) { | 
					
						
							|  |  |  |                             $h = $this->V[$k][$i+1]; | 
					
						
							|  |  |  |                             $this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h; | 
					
						
							|  |  |  |                             $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1; | 
					
						
							|  |  |  |                     $this->e[$l] = $s * $p; | 
					
						
							|  |  |  |                     $this->d[$l] = $c * $p; | 
					
						
							|  |  |  |                 // Check for convergence.
 | 
					
						
							|  |  |  |                 } while (abs($this->e[$l]) > $eps * $tst1); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             $this->d[$l] = $this->d[$l] + $f; | 
					
						
							|  |  |  |             $this->e[$l] = 0.0; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Sort eigenvalues and corresponding vectors.
 | 
					
						
							|  |  |  |         for ($i = 0; $i < $this->n - 1; ++$i) { | 
					
						
							|  |  |  |             $k = $i; | 
					
						
							|  |  |  |             $p = $this->d[$i]; | 
					
						
							|  |  |  |             for ($j = $i+1; $j < $this->n; ++$j) { | 
					
						
							|  |  |  |                 if ($this->d[$j] < $p) { | 
					
						
							|  |  |  |                     $k = $j; | 
					
						
							|  |  |  |                     $p = $this->d[$j]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             if ($k != $i) { | 
					
						
							|  |  |  |                 $this->d[$k] = $this->d[$i]; | 
					
						
							|  |  |  |                 $this->d[$i] = $p; | 
					
						
							|  |  |  |                 for ($j = 0; $j < $this->n; ++$j) { | 
					
						
							|  |  |  |                     $p = $this->V[$j][$i]; | 
					
						
							|  |  |  |                     $this->V[$j][$i] = $this->V[$j][$k]; | 
					
						
							|  |  |  |                     $this->V[$j][$k] = $p; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Nonsymmetric reduction to Hessenberg form. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    This is derived from the Algol procedures orthes and ortran, | 
					
						
							|  |  |  |      *    by Martin and Wilkinson, Handbook for Auto. Comp., | 
					
						
							|  |  |  |      *    Vol.ii-Linear Algebra, and the corresponding | 
					
						
							|  |  |  |      *    Fortran subroutines in EISPACK. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access private | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     private function orthes() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         $low  = 0; | 
					
						
							|  |  |  |         $high = $this->n-1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for ($m = $low+1; $m <= $high-1; ++$m) { | 
					
						
							|  |  |  |             // Scale column.
 | 
					
						
							|  |  |  |             $scale = 0.0; | 
					
						
							|  |  |  |             for ($i = $m; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                 $scale = $scale + abs($this->H[$i][$m-1]); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             if ($scale != 0.0) { | 
					
						
							|  |  |  |                 // Compute Householder transformation.
 | 
					
						
							|  |  |  |                 $h = 0.0; | 
					
						
							|  |  |  |                 for ($i = $high; $i >= $m; --$i) { | 
					
						
							|  |  |  |                     $this->ort[$i] = $this->H[$i][$m-1] / $scale; | 
					
						
							|  |  |  |                     $h += $this->ort[$i] * $this->ort[$i]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $g = sqrt($h); | 
					
						
							|  |  |  |                 if ($this->ort[$m] > 0) { | 
					
						
							|  |  |  |                     $g *= -1; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $h -= $this->ort[$m] * $g; | 
					
						
							|  |  |  |                 $this->ort[$m] -= $g; | 
					
						
							|  |  |  |                 // Apply Householder similarity transformation
 | 
					
						
							|  |  |  |                 // H = (I -u * u' / h) * H * (I -u * u') / h)
 | 
					
						
							|  |  |  |                 for ($j = $m; $j < $this->n; ++$j) { | 
					
						
							|  |  |  |                     $f = 0.0; | 
					
						
							|  |  |  |                     for ($i = $high; $i >= $m; --$i) { | 
					
						
							|  |  |  |                         $f += $this->ort[$i] * $this->H[$i][$j]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $f /= $h; | 
					
						
							|  |  |  |                     for ($i = $m; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                         $this->H[$i][$j] -= $f * $this->ort[$i]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 for ($i = 0; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                     $f = 0.0; | 
					
						
							|  |  |  |                     for ($j = $high; $j >= $m; --$j) { | 
					
						
							|  |  |  |                         $f += $this->ort[$j] * $this->H[$i][$j]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $f = $f / $h; | 
					
						
							|  |  |  |                     for ($j = $m; $j <= $high; ++$j) { | 
					
						
							|  |  |  |                         $this->H[$i][$j] -= $f * $this->ort[$j]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $this->ort[$m] = $scale * $this->ort[$m]; | 
					
						
							|  |  |  |                 $this->H[$m][$m-1] = $scale * $g; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Accumulate transformations (Algol's ortran).
 | 
					
						
							|  |  |  |         for ($i = 0; $i < $this->n; ++$i) { | 
					
						
							|  |  |  |             for ($j = 0; $j < $this->n; ++$j) { | 
					
						
							|  |  |  |                 $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         for ($m = $high-1; $m >= $low+1; --$m) { | 
					
						
							|  |  |  |             if ($this->H[$m][$m-1] != 0.0) { | 
					
						
							|  |  |  |                 for ($i = $m+1; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                     $this->ort[$i] = $this->H[$i][$m-1]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 for ($j = $m; $j <= $high; ++$j) { | 
					
						
							|  |  |  |                     $g = 0.0; | 
					
						
							|  |  |  |                     for ($i = $m; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                         $g += $this->ort[$i] * $this->V[$i][$j]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     // Double division avoids possible underflow
 | 
					
						
							|  |  |  |                     $g = ($g / $this->ort[$m]) / $this->H[$m][$m-1]; | 
					
						
							|  |  |  |                     for ($i = $m; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                         $this->V[$i][$j] += $g * $this->ort[$i]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Performs complex division. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access private | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     private function cdiv($xr, $xi, $yr, $yi) | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         if (abs($yr) > abs($yi)) { | 
					
						
							|  |  |  |             $r = $yi / $yr; | 
					
						
							|  |  |  |             $d = $yr + $r * $yi; | 
					
						
							|  |  |  |             $this->cdivr = ($xr + $r * $xi) / $d; | 
					
						
							|  |  |  |             $this->cdivi = ($xi - $r * $xr) / $d; | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             $r = $yr / $yi; | 
					
						
							|  |  |  |             $d = $yi + $r * $yr; | 
					
						
							|  |  |  |             $this->cdivr = ($r * $xr + $xi) / $d; | 
					
						
							|  |  |  |             $this->cdivi = ($r * $xi - $xr) / $d; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Nonsymmetric reduction from Hessenberg to real Schur form. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    Code is derived from the Algol procedure hqr2, | 
					
						
							|  |  |  |      *    by Martin and Wilkinson, Handbook for Auto. Comp., | 
					
						
							|  |  |  |      *    Vol.ii-Linear Algebra, and the corresponding | 
					
						
							|  |  |  |      *    Fortran subroutine in EISPACK. | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access private | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     private function hqr2() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         //  Initialize
 | 
					
						
							|  |  |  |         $nn = $this->n; | 
					
						
							|  |  |  |         $n  = $nn - 1; | 
					
						
							|  |  |  |         $low = 0; | 
					
						
							|  |  |  |         $high = $nn - 1; | 
					
						
							|  |  |  |         $eps = pow(2.0, -52.0); | 
					
						
							|  |  |  |         $exshift = 0.0; | 
					
						
							|  |  |  |         $p = $q = $r = $s = $z = 0; | 
					
						
							|  |  |  |         // Store roots isolated by balanc and compute matrix norm
 | 
					
						
							|  |  |  |         $norm = 0.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for ($i = 0; $i < $nn; ++$i) { | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |             if (($i < $low) or ($i > $high)) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                 $this->d[$i] = $this->H[$i][$i]; | 
					
						
							|  |  |  |                 $this->e[$i] = 0.0; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             for ($j = max($i-1, 0); $j < $nn; ++$j) { | 
					
						
							|  |  |  |                 $norm = $norm + abs($this->H[$i][$j]); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Outer loop over eigenvalue index
 | 
					
						
							|  |  |  |         $iter = 0; | 
					
						
							|  |  |  |         while ($n >= $low) { | 
					
						
							|  |  |  |             // Look for single small sub-diagonal element
 | 
					
						
							|  |  |  |             $l = $n; | 
					
						
							|  |  |  |             while ($l > $low) { | 
					
						
							|  |  |  |                 $s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]); | 
					
						
							|  |  |  |                 if ($s == 0.0) { | 
					
						
							|  |  |  |                     $s = $norm; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 if (abs($this->H[$l][$l-1]) < $eps * $s) { | 
					
						
							|  |  |  |                     break; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 --$l; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             // Check for convergence
 | 
					
						
							|  |  |  |             // One root found
 | 
					
						
							|  |  |  |             if ($l == $n) { | 
					
						
							|  |  |  |                 $this->H[$n][$n] = $this->H[$n][$n] + $exshift; | 
					
						
							|  |  |  |                 $this->d[$n] = $this->H[$n][$n]; | 
					
						
							|  |  |  |                 $this->e[$n] = 0.0; | 
					
						
							|  |  |  |                 --$n; | 
					
						
							|  |  |  |                 $iter = 0; | 
					
						
							|  |  |  |             // Two roots found
 | 
					
						
							| 
									
										
										
										
											2015-05-18 15:39:04 +00:00
										 |  |  |             } elseif ($l == $n-1) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                 $w = $this->H[$n][$n-1] * $this->H[$n-1][$n]; | 
					
						
							|  |  |  |                 $p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0; | 
					
						
							|  |  |  |                 $q = $p * $p + $w; | 
					
						
							|  |  |  |                 $z = sqrt(abs($q)); | 
					
						
							|  |  |  |                 $this->H[$n][$n] = $this->H[$n][$n] + $exshift; | 
					
						
							|  |  |  |                 $this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift; | 
					
						
							|  |  |  |                 $x = $this->H[$n][$n]; | 
					
						
							|  |  |  |                 // Real pair
 | 
					
						
							|  |  |  |                 if ($q >= 0) { | 
					
						
							|  |  |  |                     if ($p >= 0) { | 
					
						
							|  |  |  |                         $z = $p + $z; | 
					
						
							|  |  |  |                     } else { | 
					
						
							|  |  |  |                         $z = $p - $z; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $this->d[$n-1] = $x + $z; | 
					
						
							|  |  |  |                     $this->d[$n] = $this->d[$n-1]; | 
					
						
							|  |  |  |                     if ($z != 0.0) { | 
					
						
							|  |  |  |                         $this->d[$n] = $x - $w / $z; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $this->e[$n-1] = 0.0; | 
					
						
							|  |  |  |                     $this->e[$n] = 0.0; | 
					
						
							|  |  |  |                     $x = $this->H[$n][$n-1]; | 
					
						
							|  |  |  |                     $s = abs($x) + abs($z); | 
					
						
							|  |  |  |                     $p = $x / $s; | 
					
						
							|  |  |  |                     $q = $z / $s; | 
					
						
							|  |  |  |                     $r = sqrt($p * $p + $q * $q); | 
					
						
							|  |  |  |                     $p = $p / $r; | 
					
						
							|  |  |  |                     $q = $q / $r; | 
					
						
							|  |  |  |                     // Row modification
 | 
					
						
							|  |  |  |                     for ($j = $n-1; $j < $nn; ++$j) { | 
					
						
							|  |  |  |                         $z = $this->H[$n-1][$j]; | 
					
						
							|  |  |  |                         $this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j]; | 
					
						
							|  |  |  |                         $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     // Column modification
 | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |                     for ($i = 0; $i <= $n; ++$i) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                         $z = $this->H[$i][$n-1]; | 
					
						
							|  |  |  |                         $this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n]; | 
					
						
							|  |  |  |                         $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     // Accumulate transformations
 | 
					
						
							|  |  |  |                     for ($i = $low; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                         $z = $this->V[$i][$n-1]; | 
					
						
							|  |  |  |                         $this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n]; | 
					
						
							|  |  |  |                         $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 // Complex pair
 | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     $this->d[$n-1] = $x + $p; | 
					
						
							|  |  |  |                     $this->d[$n] = $x + $p; | 
					
						
							|  |  |  |                     $this->e[$n-1] = $z; | 
					
						
							|  |  |  |                     $this->e[$n] = -$z; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $n = $n - 2; | 
					
						
							|  |  |  |                 $iter = 0; | 
					
						
							|  |  |  |             // No convergence yet
 | 
					
						
							|  |  |  |             } else { | 
					
						
							|  |  |  |                 // Form shift
 | 
					
						
							|  |  |  |                 $x = $this->H[$n][$n]; | 
					
						
							|  |  |  |                 $y = 0.0; | 
					
						
							|  |  |  |                 $w = 0.0; | 
					
						
							|  |  |  |                 if ($l < $n) { | 
					
						
							|  |  |  |                     $y = $this->H[$n-1][$n-1]; | 
					
						
							|  |  |  |                     $w = $this->H[$n][$n-1] * $this->H[$n-1][$n]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 // Wilkinson's original ad hoc shift
 | 
					
						
							|  |  |  |                 if ($iter == 10) { | 
					
						
							|  |  |  |                     $exshift += $x; | 
					
						
							|  |  |  |                     for ($i = $low; $i <= $n; ++$i) { | 
					
						
							|  |  |  |                         $this->H[$i][$i] -= $x; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]); | 
					
						
							|  |  |  |                     $x = $y = 0.75 * $s; | 
					
						
							|  |  |  |                     $w = -0.4375 * $s * $s; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 // MATLAB's new ad hoc shift
 | 
					
						
							|  |  |  |                 if ($iter == 30) { | 
					
						
							|  |  |  |                     $s = ($y - $x) / 2.0; | 
					
						
							|  |  |  |                     $s = $s * $s + $w; | 
					
						
							|  |  |  |                     if ($s > 0) { | 
					
						
							|  |  |  |                         $s = sqrt($s); | 
					
						
							|  |  |  |                         if ($y < $x) { | 
					
						
							|  |  |  |                             $s = -$s; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         $s = $x - $w / (($y - $x) / 2.0 + $s); | 
					
						
							|  |  |  |                         for ($i = $low; $i <= $n; ++$i) { | 
					
						
							|  |  |  |                             $this->H[$i][$i] -= $s; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         $exshift += $s; | 
					
						
							|  |  |  |                         $x = $y = $w = 0.964; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 // Could check iteration count here.
 | 
					
						
							|  |  |  |                 $iter = $iter + 1; | 
					
						
							|  |  |  |                 // Look for two consecutive small sub-diagonal elements
 | 
					
						
							|  |  |  |                 $m = $n - 2; | 
					
						
							|  |  |  |                 while ($m >= $l) { | 
					
						
							|  |  |  |                     $z = $this->H[$m][$m]; | 
					
						
							|  |  |  |                     $r = $x - $z; | 
					
						
							|  |  |  |                     $s = $y - $z; | 
					
						
							|  |  |  |                     $p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1]; | 
					
						
							|  |  |  |                     $q = $this->H[$m+1][$m+1] - $z - $r - $s; | 
					
						
							|  |  |  |                     $r = $this->H[$m+2][$m+1]; | 
					
						
							|  |  |  |                     $s = abs($p) + abs($q) + abs($r); | 
					
						
							|  |  |  |                     $p = $p / $s; | 
					
						
							|  |  |  |                     $q = $q / $s; | 
					
						
							|  |  |  |                     $r = $r / $s; | 
					
						
							|  |  |  |                     if ($m == $l) { | 
					
						
							|  |  |  |                         break; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) < | 
					
						
							|  |  |  |                         $eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) { | 
					
						
							|  |  |  |                         break; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     --$m; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 for ($i = $m + 2; $i <= $n; ++$i) { | 
					
						
							|  |  |  |                     $this->H[$i][$i-2] = 0.0; | 
					
						
							|  |  |  |                     if ($i > $m+2) { | 
					
						
							|  |  |  |                         $this->H[$i][$i-3] = 0.0; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 // Double QR step involving rows l:n and columns m:n
 | 
					
						
							|  |  |  |                 for ($k = $m; $k <= $n-1; ++$k) { | 
					
						
							|  |  |  |                     $notlast = ($k != $n-1); | 
					
						
							|  |  |  |                     if ($k != $m) { | 
					
						
							|  |  |  |                         $p = $this->H[$k][$k-1]; | 
					
						
							|  |  |  |                         $q = $this->H[$k+1][$k-1]; | 
					
						
							|  |  |  |                         $r = ($notlast ? $this->H[$k+2][$k-1] : 0.0); | 
					
						
							|  |  |  |                         $x = abs($p) + abs($q) + abs($r); | 
					
						
							|  |  |  |                         if ($x != 0.0) { | 
					
						
							|  |  |  |                             $p = $p / $x; | 
					
						
							|  |  |  |                             $q = $q / $x; | 
					
						
							|  |  |  |                             $r = $r / $x; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     if ($x == 0.0) { | 
					
						
							|  |  |  |                         break; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $s = sqrt($p * $p + $q * $q + $r * $r); | 
					
						
							|  |  |  |                     if ($p < 0) { | 
					
						
							|  |  |  |                         $s = -$s; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     if ($s != 0) { | 
					
						
							|  |  |  |                         if ($k != $m) { | 
					
						
							|  |  |  |                             $this->H[$k][$k-1] = -$s * $x; | 
					
						
							|  |  |  |                         } elseif ($l != $m) { | 
					
						
							|  |  |  |                             $this->H[$k][$k-1] = -$this->H[$k][$k-1]; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         $p = $p + $s; | 
					
						
							|  |  |  |                         $x = $p / $s; | 
					
						
							|  |  |  |                         $y = $q / $s; | 
					
						
							|  |  |  |                         $z = $r / $s; | 
					
						
							|  |  |  |                         $q = $q / $p; | 
					
						
							|  |  |  |                         $r = $r / $p; | 
					
						
							|  |  |  |                         // Row modification
 | 
					
						
							|  |  |  |                         for ($j = $k; $j < $nn; ++$j) { | 
					
						
							|  |  |  |                             $p = $this->H[$k][$j] + $q * $this->H[$k+1][$j]; | 
					
						
							|  |  |  |                             if ($notlast) { | 
					
						
							|  |  |  |                                 $p = $p + $r * $this->H[$k+2][$j]; | 
					
						
							|  |  |  |                                 $this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                             $this->H[$k][$j] = $this->H[$k][$j] - $p * $x; | 
					
						
							|  |  |  |                             $this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         // Column modification
 | 
					
						
							|  |  |  |                         for ($i = 0; $i <= min($n, $k+3); ++$i) { | 
					
						
							|  |  |  |                             $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1]; | 
					
						
							|  |  |  |                             if ($notlast) { | 
					
						
							|  |  |  |                                 $p = $p + $z * $this->H[$i][$k+2]; | 
					
						
							|  |  |  |                                 $this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                             $this->H[$i][$k] = $this->H[$i][$k] - $p; | 
					
						
							|  |  |  |                             $this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         // Accumulate transformations
 | 
					
						
							|  |  |  |                         for ($i = $low; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                             $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1]; | 
					
						
							|  |  |  |                             if ($notlast) { | 
					
						
							|  |  |  |                                 $p = $p + $z * $this->V[$i][$k+2]; | 
					
						
							|  |  |  |                                 $this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                             $this->V[$i][$k] = $this->V[$i][$k] - $p; | 
					
						
							|  |  |  |                             $this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q; | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                     }  // ($s != 0)
 | 
					
						
							|  |  |  |                 }  // k loop
 | 
					
						
							|  |  |  |             }  // check convergence
 | 
					
						
							|  |  |  |         }  // while ($n >= $low)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Backsubstitute to find vectors of upper triangular form
 | 
					
						
							|  |  |  |         if ($norm == 0.0) { | 
					
						
							|  |  |  |             return; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for ($n = $nn-1; $n >= 0; --$n) { | 
					
						
							|  |  |  |             $p = $this->d[$n]; | 
					
						
							|  |  |  |             $q = $this->e[$n]; | 
					
						
							|  |  |  |             // Real vector
 | 
					
						
							|  |  |  |             if ($q == 0) { | 
					
						
							|  |  |  |                 $l = $n; | 
					
						
							|  |  |  |                 $this->H[$n][$n] = 1.0; | 
					
						
							|  |  |  |                 for ($i = $n-1; $i >= 0; --$i) { | 
					
						
							|  |  |  |                     $w = $this->H[$i][$i] - $p; | 
					
						
							|  |  |  |                     $r = 0.0; | 
					
						
							|  |  |  |                     for ($j = $l; $j <= $n; ++$j) { | 
					
						
							|  |  |  |                         $r = $r + $this->H[$i][$j] * $this->H[$j][$n]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     if ($this->e[$i] < 0.0) { | 
					
						
							|  |  |  |                         $z = $w; | 
					
						
							|  |  |  |                         $s = $r; | 
					
						
							|  |  |  |                     } else { | 
					
						
							|  |  |  |                         $l = $i; | 
					
						
							|  |  |  |                         if ($this->e[$i] == 0.0) { | 
					
						
							|  |  |  |                             if ($w != 0.0) { | 
					
						
							|  |  |  |                                 $this->H[$i][$n] = -$r / $w; | 
					
						
							|  |  |  |                             } else { | 
					
						
							|  |  |  |                                 $this->H[$i][$n] = -$r / ($eps * $norm); | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                         // Solve real equations
 | 
					
						
							|  |  |  |                         } else { | 
					
						
							|  |  |  |                             $x = $this->H[$i][$i+1]; | 
					
						
							|  |  |  |                             $y = $this->H[$i+1][$i]; | 
					
						
							|  |  |  |                             $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i]; | 
					
						
							|  |  |  |                             $t = ($x * $s - $z * $r) / $q; | 
					
						
							|  |  |  |                             $this->H[$i][$n] = $t; | 
					
						
							|  |  |  |                             if (abs($x) > abs($z)) { | 
					
						
							|  |  |  |                                 $this->H[$i+1][$n] = (-$r - $w * $t) / $x; | 
					
						
							|  |  |  |                             } else { | 
					
						
							|  |  |  |                                 $this->H[$i+1][$n] = (-$s - $y * $t) / $z; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         // Overflow control
 | 
					
						
							|  |  |  |                         $t = abs($this->H[$i][$n]); | 
					
						
							|  |  |  |                         if (($eps * $t) * $t > 1) { | 
					
						
							|  |  |  |                             for ($j = $i; $j <= $n; ++$j) { | 
					
						
							|  |  |  |                                 $this->H[$j][$n] = $this->H[$j][$n] / $t; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             // Complex vector
 | 
					
						
							| 
									
										
										
										
											2015-05-18 15:39:04 +00:00
										 |  |  |             } elseif ($q < 0) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                 $l = $n-1; | 
					
						
							|  |  |  |                 // Last vector component imaginary so matrix is triangular
 | 
					
						
							|  |  |  |                 if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) { | 
					
						
							|  |  |  |                     $this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1]; | 
					
						
							|  |  |  |                     $this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1]; | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     $this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q); | 
					
						
							|  |  |  |                     $this->H[$n-1][$n-1] = $this->cdivr; | 
					
						
							|  |  |  |                     $this->H[$n-1][$n]   = $this->cdivi; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $this->H[$n][$n-1] = 0.0; | 
					
						
							|  |  |  |                 $this->H[$n][$n] = 1.0; | 
					
						
							|  |  |  |                 for ($i = $n-2; $i >= 0; --$i) { | 
					
						
							|  |  |  |                     // double ra,sa,vr,vi;
 | 
					
						
							|  |  |  |                     $ra = 0.0; | 
					
						
							|  |  |  |                     $sa = 0.0; | 
					
						
							|  |  |  |                     for ($j = $l; $j <= $n; ++$j) { | 
					
						
							|  |  |  |                         $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1]; | 
					
						
							|  |  |  |                         $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                     $w = $this->H[$i][$i] - $p; | 
					
						
							|  |  |  |                     if ($this->e[$i] < 0.0) { | 
					
						
							|  |  |  |                         $z = $w; | 
					
						
							|  |  |  |                         $r = $ra; | 
					
						
							|  |  |  |                         $s = $sa; | 
					
						
							|  |  |  |                     } else { | 
					
						
							|  |  |  |                         $l = $i; | 
					
						
							|  |  |  |                         if ($this->e[$i] == 0) { | 
					
						
							|  |  |  |                             $this->cdiv(-$ra, -$sa, $w, $q); | 
					
						
							|  |  |  |                             $this->H[$i][$n-1] = $this->cdivr; | 
					
						
							|  |  |  |                             $this->H[$i][$n]   = $this->cdivi; | 
					
						
							|  |  |  |                         } else { | 
					
						
							|  |  |  |                             // Solve complex equations
 | 
					
						
							|  |  |  |                             $x = $this->H[$i][$i+1]; | 
					
						
							|  |  |  |                             $y = $this->H[$i+1][$i]; | 
					
						
							|  |  |  |                             $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q; | 
					
						
							|  |  |  |                             $vi = ($this->d[$i] - $p) * 2.0 * $q; | 
					
						
							|  |  |  |                             if ($vr == 0.0 & $vi == 0.0) { | 
					
						
							|  |  |  |                                 $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z)); | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                             $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi); | 
					
						
							|  |  |  |                             $this->H[$i][$n-1] = $this->cdivr; | 
					
						
							|  |  |  |                             $this->H[$i][$n]   = $this->cdivi; | 
					
						
							|  |  |  |                             if (abs($x) > (abs($z) + abs($q))) { | 
					
						
							|  |  |  |                                 $this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x; | 
					
						
							|  |  |  |                                 $this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x; | 
					
						
							|  |  |  |                             } else { | 
					
						
							|  |  |  |                                 $this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q); | 
					
						
							|  |  |  |                                 $this->H[$i+1][$n-1] = $this->cdivr; | 
					
						
							|  |  |  |                                 $this->H[$i+1][$n]   = $this->cdivi; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                         // Overflow control
 | 
					
						
							| 
									
										
										
										
											2015-05-17 13:00:02 +00:00
										 |  |  |                         $t = max(abs($this->H[$i][$n-1]), abs($this->H[$i][$n])); | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                         if (($eps * $t) * $t > 1) { | 
					
						
							|  |  |  |                             for ($j = $i; $j <= $n; ++$j) { | 
					
						
							|  |  |  |                                 $this->H[$j][$n-1] = $this->H[$j][$n-1] / $t; | 
					
						
							|  |  |  |                                 $this->H[$j][$n]   = $this->H[$j][$n] / $t; | 
					
						
							|  |  |  |                             } | 
					
						
							|  |  |  |                         } | 
					
						
							|  |  |  |                     } // end else
 | 
					
						
							|  |  |  |                 } // end for
 | 
					
						
							|  |  |  |             } // end else for complex case
 | 
					
						
							|  |  |  |         } // end for
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Vectors of isolated roots
 | 
					
						
							|  |  |  |         for ($i = 0; $i < $nn; ++$i) { | 
					
						
							|  |  |  |             if ($i < $low | $i > $high) { | 
					
						
							|  |  |  |                 for ($j = $i; $j < $nn; ++$j) { | 
					
						
							|  |  |  |                     $this->V[$i][$j] = $this->H[$i][$j]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Back transformation to get eigenvectors of original matrix
 | 
					
						
							|  |  |  |         for ($j = $nn-1; $j >= $low; --$j) { | 
					
						
							|  |  |  |             for ($i = $low; $i <= $high; ++$i) { | 
					
						
							|  |  |  |                 $z = 0.0; | 
					
						
							| 
									
										
										
										
											2015-05-13 10:27:01 +00:00
										 |  |  |                 for ($k = $low; $k <= min($j, $high); ++$k) { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |                     $z = $z + $this->V[$i][$k] * $this->H[$k][$j]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 $this->V[$i][$j] = $z; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } // end hqr2
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Constructor: Check for symmetry, then construct the eigenvalue decomposition | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access public | 
					
						
							|  |  |  |      *    @param A  Square matrix | 
					
						
							|  |  |  |      *    @return Structure to access D and V. | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     public function __construct($Arg) | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         $this->A = $Arg->getArray(); | 
					
						
							|  |  |  |         $this->n = $Arg->getColumnDimension(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         $issymmetric = true; | 
					
						
							|  |  |  |         for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) { | 
					
						
							|  |  |  |             for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) { | 
					
						
							|  |  |  |                 $issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if ($issymmetric) { | 
					
						
							|  |  |  |             $this->V = $this->A; | 
					
						
							|  |  |  |             // Tridiagonalize.
 | 
					
						
							|  |  |  |             $this->tred2(); | 
					
						
							|  |  |  |             // Diagonalize.
 | 
					
						
							|  |  |  |             $this->tql2(); | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             $this->H = $this->A; | 
					
						
							|  |  |  |             $this->ort = array(); | 
					
						
							|  |  |  |             // Reduce to Hessenberg form.
 | 
					
						
							|  |  |  |             $this->orthes(); | 
					
						
							|  |  |  |             // Reduce Hessenberg to real Schur form.
 | 
					
						
							|  |  |  |             $this->hqr2(); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Return the eigenvector matrix | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access public | 
					
						
							|  |  |  |      *    @return V | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     public function getV() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         return new Matrix($this->V, $this->n, $this->n); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Return the real parts of the eigenvalues | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access public | 
					
						
							|  |  |  |      *    @return real(diag(D)) | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     public function getRealEigenvalues() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         return $this->d; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Return the imaginary parts of the eigenvalues | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access public | 
					
						
							|  |  |  |      *    @return imag(diag(D)) | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     public function getImagEigenvalues() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         return $this->e; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** | 
					
						
							|  |  |  |      *    Return the block diagonal eigenvalue matrix | 
					
						
							|  |  |  |      * | 
					
						
							|  |  |  |      *    @access public | 
					
						
							|  |  |  |      *    @return D | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  |     public function getD() | 
					
						
							|  |  |  |     { | 
					
						
							| 
									
										
										
										
											2015-05-12 09:22:06 +00:00
										 |  |  |         for ($i = 0; $i < $this->n; ++$i) { | 
					
						
							|  |  |  |             $D[$i] = array_fill(0, $this->n, 0.0); | 
					
						
							|  |  |  |             $D[$i][$i] = $this->d[$i]; | 
					
						
							|  |  |  |             if ($this->e[$i] == 0) { | 
					
						
							|  |  |  |                 continue; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1; | 
					
						
							|  |  |  |             $D[$i][$o] = $this->e[$i]; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return new Matrix($D); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2015-05-17 12:16:53 +00:00
										 |  |  | } |