256 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
		
		
			
		
	
	
			256 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
|   | <?php | ||
|  | /** | ||
|  |  *	@package JAMA | ||
|  |  * | ||
|  |  *	For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n | ||
|  |  *	unit lower triangular matrix L, an n-by-n upper triangular matrix U, | ||
|  |  *	and a permutation vector piv of length m so that A(piv,:) = L*U. | ||
|  |  *	If m < n, then L is m-by-m and U is m-by-n. | ||
|  |  * | ||
|  |  *	The LU decompostion with pivoting always exists, even if the matrix is | ||
|  |  *	singular, so the constructor will never fail. The primary use of the | ||
|  |  *	LU decomposition is in the solution of square systems of simultaneous | ||
|  |  *	linear equations. This will fail if isNonsingular() returns false. | ||
|  |  * | ||
|  |  *	@author Paul Meagher | ||
|  |  *	@author Bartosz Matosiuk | ||
|  |  *	@author Michael Bommarito | ||
|  |  *	@version 1.1 | ||
|  |  *	@license PHP v3.0 | ||
|  |  */ | ||
|  | class LUDecomposition { | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Decomposition storage | ||
|  | 	 *	@var array | ||
|  | 	 */ | ||
|  | 	private $LU = array(); | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Row dimension. | ||
|  | 	 *	@var int | ||
|  | 	 */ | ||
|  | 	private $m; | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Column dimension. | ||
|  | 	 *	@var int | ||
|  | 	 */ | ||
|  | 	private $n; | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Pivot sign. | ||
|  | 	 *	@var int | ||
|  | 	 */ | ||
|  | 	private $pivsign; | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Internal storage of pivot vector. | ||
|  | 	 *	@var array | ||
|  | 	 */ | ||
|  | 	private $piv = array(); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	LU Decomposition constructor. | ||
|  | 	 * | ||
|  | 	 *	@param $A Rectangular matrix | ||
|  | 	 *	@return Structure to access L, U and piv. | ||
|  | 	 */ | ||
|  | 	public function __construct($A) { | ||
|  | 		if ($A instanceof Matrix) { | ||
|  | 			// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
 | ||
|  | 			$this->LU = $A->getArrayCopy(); | ||
|  | 			$this->m  = $A->getRowDimension(); | ||
|  | 			$this->n  = $A->getColumnDimension(); | ||
|  | 			for ($i = 0; $i < $this->m; ++$i) { | ||
|  | 				$this->piv[$i] = $i; | ||
|  | 			} | ||
|  | 			$this->pivsign = 1; | ||
|  | 			$LUrowi = $LUcolj = array(); | ||
|  | 
 | ||
|  | 			// Outer loop.
 | ||
|  | 			for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 				// Make a copy of the j-th column to localize references.
 | ||
|  | 				for ($i = 0; $i < $this->m; ++$i) { | ||
|  | 					$LUcolj[$i] = &$this->LU[$i][$j]; | ||
|  | 				} | ||
|  | 				// Apply previous transformations.
 | ||
|  | 				for ($i = 0; $i < $this->m; ++$i) { | ||
|  | 					$LUrowi = $this->LU[$i]; | ||
|  | 					// Most of the time is spent in the following dot product.
 | ||
|  | 					$kmax = min($i,$j); | ||
|  | 					$s = 0.0; | ||
|  | 					for ($k = 0; $k < $kmax; ++$k) { | ||
|  | 						$s += $LUrowi[$k] * $LUcolj[$k]; | ||
|  | 					} | ||
|  | 					$LUrowi[$j] = $LUcolj[$i] -= $s; | ||
|  | 				} | ||
|  | 				// Find pivot and exchange if necessary.
 | ||
|  | 				$p = $j; | ||
|  | 				for ($i = $j+1; $i < $this->m; ++$i) { | ||
|  | 					if (abs($LUcolj[$i]) > abs($LUcolj[$p])) { | ||
|  | 						$p = $i; | ||
|  | 					} | ||
|  | 				} | ||
|  | 				if ($p != $j) { | ||
|  | 					for ($k = 0; $k < $this->n; ++$k) { | ||
|  | 						$t = $this->LU[$p][$k]; | ||
|  | 						$this->LU[$p][$k] = $this->LU[$j][$k]; | ||
|  | 						$this->LU[$j][$k] = $t; | ||
|  | 					} | ||
|  | 					$k = $this->piv[$p]; | ||
|  | 					$this->piv[$p] = $this->piv[$j]; | ||
|  | 					$this->piv[$j] = $k; | ||
|  | 					$this->pivsign = $this->pivsign * -1; | ||
|  | 				} | ||
|  | 				// Compute multipliers.
 | ||
|  | 				if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) { | ||
|  | 					for ($i = $j+1; $i < $this->m; ++$i) { | ||
|  | 						$this->LU[$i][$j] /= $this->LU[$j][$j]; | ||
|  | 					} | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			throw new Exception(JAMAError(ArgumentTypeException)); | ||
|  | 		} | ||
|  | 	}	//	function __construct()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Get lower triangular factor. | ||
|  | 	 * | ||
|  | 	 *	@return array Lower triangular factor | ||
|  | 	 */ | ||
|  | 	public function getL() { | ||
|  | 		for ($i = 0; $i < $this->m; ++$i) { | ||
|  | 			for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 				if ($i > $j) { | ||
|  | 					$L[$i][$j] = $this->LU[$i][$j]; | ||
|  | 				} elseif ($i == $j) { | ||
|  | 					$L[$i][$j] = 1.0; | ||
|  | 				} else { | ||
|  | 					$L[$i][$j] = 0.0; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return new Matrix($L); | ||
|  | 	}	//	function getL()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Get upper triangular factor. | ||
|  | 	 * | ||
|  | 	 *	@return array Upper triangular factor | ||
|  | 	 */ | ||
|  | 	public function getU() { | ||
|  | 		for ($i = 0; $i < $this->n; ++$i) { | ||
|  | 			for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 				if ($i <= $j) { | ||
|  | 					$U[$i][$j] = $this->LU[$i][$j]; | ||
|  | 				} else { | ||
|  | 					$U[$i][$j] = 0.0; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return new Matrix($U); | ||
|  | 	}	//	function getU()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Return pivot permutation vector. | ||
|  | 	 * | ||
|  | 	 *	@return array Pivot vector | ||
|  | 	 */ | ||
|  | 	public function getPivot() { | ||
|  | 		return $this->piv; | ||
|  | 	}	//	function getPivot()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Alias for getPivot | ||
|  | 	 * | ||
|  | 	 *	@see getPivot | ||
|  | 	 */ | ||
|  | 	public function getDoublePivot() { | ||
|  | 		return $this->getPivot(); | ||
|  | 	}	//	function getDoublePivot()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Is the matrix nonsingular? | ||
|  | 	 * | ||
|  | 	 *	@return true if U, and hence A, is nonsingular. | ||
|  | 	 */ | ||
|  | 	public function isNonsingular() { | ||
|  | 		for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 			if ($this->LU[$j][$j] == 0) { | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		return true; | ||
|  | 	}	//	function isNonsingular()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Count determinants | ||
|  | 	 * | ||
|  | 	 *	@return array d matrix deterninat | ||
|  | 	 */ | ||
|  | 	public function det() { | ||
|  | 		if ($this->m == $this->n) { | ||
|  | 			$d = $this->pivsign; | ||
|  | 			for ($j = 0; $j < $this->n; ++$j) { | ||
|  | 				$d *= $this->LU[$j][$j]; | ||
|  | 			} | ||
|  | 			return $d; | ||
|  | 		} else { | ||
|  | 			throw new Exception(JAMAError(MatrixDimensionException)); | ||
|  | 		} | ||
|  | 	}	//	function det()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/** | ||
|  | 	 *	Solve A*X = B | ||
|  | 	 * | ||
|  | 	 *	@param  $B  A Matrix with as many rows as A and any number of columns. | ||
|  | 	 *	@return  X so that L*U*X = B(piv,:) | ||
|  | 	 *	@exception  IllegalArgumentException Matrix row dimensions must agree. | ||
|  | 	 *	@exception  RuntimeException  Matrix is singular. | ||
|  | 	 */ | ||
|  | 	public function solve($B) { | ||
|  | 		if ($B->getRowDimension() == $this->m) { | ||
|  | 			if ($this->isNonsingular()) { | ||
|  | 				// Copy right hand side with pivoting
 | ||
|  | 				$nx = $B->getColumnDimension(); | ||
|  | 				$X  = $B->getMatrix($this->piv, 0, $nx-1); | ||
|  | 				// Solve L*Y = B(piv,:)
 | ||
|  | 				for ($k = 0; $k < $this->n; ++$k) { | ||
|  | 					for ($i = $k+1; $i < $this->n; ++$i) { | ||
|  | 						for ($j = 0; $j < $nx; ++$j) { | ||
|  | 							$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k]; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				// Solve U*X = Y;
 | ||
|  | 				for ($k = $this->n-1; $k >= 0; --$k) { | ||
|  | 					for ($j = 0; $j < $nx; ++$j) { | ||
|  | 						$X->A[$k][$j] /= $this->LU[$k][$k]; | ||
|  | 					} | ||
|  | 					for ($i = 0; $i < $k; ++$i) { | ||
|  | 						for ($j = 0; $j < $nx; ++$j) { | ||
|  | 							$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k]; | ||
|  | 						} | ||
|  | 					} | ||
|  | 				} | ||
|  | 				return $X; | ||
|  | 			} else { | ||
|  | 				throw new Exception(JAMAError(MatrixSingularException)); | ||
|  | 			} | ||
|  | 		} else { | ||
|  | 			throw new Exception(JAMAError(MatrixSquareException)); | ||
|  | 		} | ||
|  | 	}	//	function solve()
 | ||
|  | 
 | ||
|  | }	//	class LUDecomposition
 |